
Persist: Persistent and Reusable
Interactions in Computational Notebooks

Kiran Gadhave, Zach Cutler, Alexander Lex
http://vdl.sci.utah.edu

THIS SHOULD BE
 PRESENTED BY

KIRAN GADHAVE
https://www.kirangadhave.me/

On t
he Jo

b Marke
t!

PERSISTENT AND REUSABLE INTERACTIONS IN
COMPUTATIONAL NOTEBOOKS

A Jupyter Plugin

https://vdl.sci.utah.edu/persist/

pip install persist_ext

Demo Notebook: https://tinyurl.com/5db7nynn

https://tinyurl.com/5db7nynn

Avalanches are a major hazard
 in Utah
Utah Avalanche Center collects data
about avalanches, including where
it occurred (location, elevation),
how it occurred, how big it was,
etc.

DATASET EXAMPLE: HISTORICAL AVALANCHES IN UTAH

Supposed you’re doing data analysis in
Python

What’s the pandas code…
• …to change the order of columns?
• …to drop a column?
• …to change the label of a column?

Nothing here is hard, but it’s annoying.

WHAT IS THIS TALK
ABOUT?

PERSIST MAKES THIS EASY

Have you ever plotted something
and wished you could just “fix”
things as you spot them?WHAT IS THIS TALK

ABOUT?

Elevation where the avalanche occurred

H
ow

 d
ee

p
(b

ig
) t

he
 a

va
la

nc
he

 w
as

Utah’s Elevation Range

PERSIST MAKES THIS EASY

Lots of vis tools support these operations
Most data wrangling happens in code: it’s just more powerful

Opportunity: bring interactive operations to code!

Persist works INSIDE your Jupyter Notebook

SO WHAT’S SPECIAL HERE?

BRIDGING BETWEEN
DATA ANALYSIS MODALITIES

What are Modalities?

1. Interactive Vis
2. Code

BRIDGING BETWEEN
DATA ANALYSIS

MODALITIES

Intuitive
Easy to use
Uses human perceptual
capabilities

INTERACTIVE VISUALIZATION: BENEFITS

Limited Expressivity
Some operations are
difficult

e.g., conditional queries..
Not reusable

need to redo analysis when
data changes

Not reproducible

INTERACTIVE VISUALIZATION: DOWNSIDES

Flexible and powerful
you basically can do anything

Reusable
if your data changes, re-run

Reproducible
everything is documented

CODE: BENEFITS

It’s hard
requires extensive training
reading documentation
not discoverable

It’s time consuming
even simple things require effort

Some operations are difficult
e.g., labeling data points

CODE / SCRIPTING: DOWNSIDES

COMPUTATIONAL NOTEBOOKS: A MIDDLE GROUND?

Observable R Markdown Jupyter Notebooks

Yes!
Afford both scripting and
interactive visualization
But visualizations are a dead end
can’t “use” interaction in code
e.g., changing a label, or filtering
a value

COMPUTATIONAL NOTEBOOKS: A MIDDLE GROUND?

 Code

 Visualizations

 Documentation

*[Wu, Hellerstein, Satyanarayan, UIST 2020]

GAPS BETWEEN CODE AND INTERACTIVE OUTPUTS*
Semantic Gap Temporal Gap Layout Gap

Information only flows from
code to visualization

Changes made to code are preserved
Changes made to vis are lost

Changes in code are messy

THESIS: BRIDGING BETWEEN CODE
AND INTERACTIVE VIS IS USEFUL

Easy handoffs are important!

RELATED WORK

B2 — Wu, Hellerstein, Satyanarayan, UIST 2020

Mage — Kery et al., UIST 2020

THE PERSIT APPROACH

Track events in interactive
visualizations

Map them to data frame operations

Operations then applied to data
frame

PRINCIPLE

HOW IT WORKS

Select 3 pointsdf1

Remove selectionsdf2

Select 3 pointsdf5

Select 2 pointsdf3

Assign category v4
to selectiondf4

Provenance

df1 df2 df3 df4 df5

Code to create chart
Assign

Category v4
Engine

V4
NA

Remove
selections

Initial plot &
selection

Select 3
points

Engine

V4
NA

Dataframe updates

Interactive Visualization

In code

Selection
Edit column names, edit cells
Sort rows/columns
Drop columns
Filter (in/out) items
Label items
Categorize items
Change data types

OPERATIONS

PERSIST WORKFLOW

Standard
Vega-Altair Chart

Call to Persist with Chart as Parameter

Persist Toolbar

Provenance History

Dataframe Manager

Vega-Altair Chart

FilteringCategorization Labelling

Branches and Choosing a State in
provenance support non-linear
analysis, addressing the layout gap

Branching

Active State

Branches and Choosing a State in
provenance support non-linear
analysis, addressing the layout gap

Active State

Persist re-runs the interactions in the output,
addressing the temporal gap

Persist applies interactions to data frames that can be accessed in code,
addressing the semantic gap

Manipulated
data frame accessed in
code
count: 2392→79

VISUALIZATION OPTIONS

Arbitrary Vega-Altair Charts An Interactive Data Table

Persist works with most Vega-Altair charts
“Listens” to native operations (selections)
Updates Vega charts:
Use original chart spec when possible (e.g., filters)
Update spec when necessary (categories, labels)

VEGA-ALTAIR

EXAMPLE CHARTS

DEMO

EVALUATION

IN-LAB STUDY

IN-LAB STUDY

RESULTS

11/11
notebooks using Persist

were reproducible

only 7/11 using pandas
were

3x
times faster
with Persist

97%
tasks correctly using Persist,
compared to 85% for Pandas

RESULTS

DISCUSSION

Provenance better for most cases
No code clutter
Undo/redo
Consistent semantics

But code generation might be
more robust
works outside of notebooks
works w/o the library

GENERATING CODE VS
PROVENANCE TRACKING

GENERATE CODE ON
DEMAND!

[Beta]

BEYOND JUPYTER

Other Interactive Plotting Libraries
Plot.ly, Bokeh

Other data types
Maps, Networks, …

DIFFERENT DATA TYPES
DIFFERENT CHARTING LIBRARIES

[Nobre et al., 2020]

Persist is available now!
https://vdl.sci.utah.edu/persist/
Documentation & examples

Feedback / bug reports
appreciated!

TRY OUT PERSIST!

https://vdl.sci.utah.edu/persist/

Persist: Persistent and Reusable
Interactions in Computational Notebooks

Kiran Gadhave, Zach Cutler, Alexander Lex
http://vdl.sci.utah.edu

Thanks to Jake Wagoner
Thanks to the NSF for Funding
(IIS 1751238, CNS 213756,
 and CNS-2313998)

