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Fig. 1: High-fidelity isosurface visualizations of gigascale block-structured adaptive mesh refinement (BS-AMR) data using our method.
Left: a 28 GB GR-Chombo [7] simulation of gravitational waves resulting from the collision of two black holes. Middle and Right: a
57 GB AMR dataset computed with LAVA [17] at NASA, simulating multiple fields over the landing gear of an aircraft. Middle: isosurface
representation of the vorticity, rendered with path tracing. Right: a combined visualization of volume rending and an isosurface of
the pressure over the landing gear, rendered with OSPRay’s SciVis renderer. Using our approach for ray tracing such AMR data, we
can interactively render crack-free implicit isosurfaces in combination with direct volume rendering and advanced shading effects like
transparency, ambient occlusion and path tracing.

Abstract—Adaptive mesh refinement (AMR) is a key technology for large-scale simulations that allows for adaptively changing the
simulation mesh resolution, resulting in significant computational and storage savings. However, visualizing such AMR data poses a
significant challenge due to the difficulties introduced by the hierarchical representation when reconstructing continuous field values.
In this paper, we detail a comprehensive solution for interactive isosurface rendering of block-structured AMR data. We contribute
a novel reconstruction strategy—the octant method—which is continuous, adaptive and simple to implement. Furthermore, we
present a generally applicable hybrid implicit isosurface ray-tracing method, which provides better rendering quality and performance
than the built-in sampling-based approach in OSPRay. Finally, we integrate our octant method and hybrid isosurface geometry
into OSPRay as a module, providing the ability to create high-quality interactive visualizations combining volume and isosurface
representations of BS-AMR data. We evaluate the rendering performance, memory consumption and quality of our method on two
gigascale block-structured AMR datasets.

Index Terms—AMR, Isosurface, Ray tracing, Reconstruction strategy, OSPRay

1 INTRODUCTION

Adaptive mesh refinement (AMR) techniques are used to solve a range
of complex problems in numerical analysis. By providing an adaptive,
hierarchical resolution representation of the computational domain,
AMR techniques allow the simulation to focus both computational
effort and storage on regions of interest, enabling larger, more complex
problems to be solved. Although other forms of AMR data exist
(e.g., mesh distortion and tree-based), block-structured AMR (BS-
AMR) [3, 4] is the most widely used in practice, as it can be easily
coupled with octree or recursive-grid AMR. BS-AMR forms the basis
for a number of scientific simulation frameworks, including BoxLib [2],
LAVA [17], Chombo [9], GR-Chombo [7], Enzo [30], AMReX [1]
and Uintah [32]. A detailed overview of these frameworks, and other
BS-AMR-based simulations, can be found in Dubey et al.’s survey [10].

Although BS-AMR techniques have found wide adoption in current
large-scale HPC simulations, visualization techniques for such data
have struggled to keep up. Existing visualization solutions for large-
scale AMR data remain either special purpose [13, 26] or have severe
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limitations [28]. General visualization frameworks such as VTK [34],
ParaView [36] and VisIt [6] provide limited support for direct visualiza-
tion of AMR datasets, requiring the user to either down- or up-sample
the data to a fixed resolution grid before rendering. Down-sampling
the data clearly comes with an undesirable loss of resolution in regions
of interest in the data, whereas up-sampling the data may require an
exorbitant amount of memory.

A key challenge in directly rendering AMR data is reconstructing
the data at level boundaries. Prior work has proposed to introduce
unstructured mesh elements to stitch across level boundaries [11, 45],
at the cost of requiring the rendering method to handle unstructured
elements. GPU-based approaches for visualizing such data [13, 16]
typically remain in special-purpose tools, and are limited by the size
of the GPU memory, requiring data-parallel rendering [12, 21, 24] to
support the large datasets produced by current simulations. Thus, an
efficient approach for direct isosurface visualization of AMR data on
CPUs remains desirable, due to both the prevalence of CPUs on current
and upcoming HPC systems and the large amount of memory available.

In this paper, we propose an efficient solution for isosurface visual-
ization of large-scale BS-AMR data. We build our approach on a novel
reconstruction method for BS-AMR data, called the octant method,
that allows us to construct crack-free implicit isosurfaces, even across
level boundaries. To render these isosurfaces, we combine ideas from
isosurface extraction and implicit isosurface ray tracing and present an
efficient hybrid implicit isosurface ray-tracing approach, which allows
for semi-interactive changes to the isovalue. Finally, we integrate our
reconstruction method and hybrid implicit isosurface approach into
the OSPRay ray-tracing framework [41] as a module, allowing us to
trivially support multiple transparent isosurfaces, combined isosurface



and volume rendering and advanced shading effects. Our contributions
in detail are:

• A novel BS-AMR reconstruction strategy—the octant method—
applicable to both isosurface and direct volume rendering, that
is locally rectilinear, adaptive and continuous, even across level
boundaries.

• An efficient hybrid implicit isosurface ray-tracing approach that
combines ideas from isosurface extraction and implicit isosurface
ray-tracing, applicable to both non-AMR data and (using our
octant method) BS-AMR data.

• The integration of the octant method and hybrid isosurface ray-
traing approach within OSPRay and the evaluation of the system’s
capabilities on two complex BS-AMR datasets.

2 RELATED WORK

AMR was first introduced by Berger and Oliger [4], who used a binary
decomposition (e.g., a quadtree or octree) to create a hierarchical repre-
sentation of the simulation domain. Berger and Colella [3] extended this
approach and proposed a more general BS-AMR representation. BS-
AMR represents the simulation domain as a series of overlapping grids
of arbitrary dimension, where higher resolution grids are used only in
regions of interest. As discussed previously, this BS-AMR representa-
tion has found wide adoption in the simulation community [10]. Similar
to nonadaptive grid approaches (Figures 2a and 2b), in BS-AMR meth-
ods the data can be stored either on the grid vertices (Figure 2c) or at
the cell centers (Figure 2d). In practice, most existing AMR simulation
frameworks use a cell-centered grid [42]. Unless otherwise specified,
throughout the text we will focus on cell-centered AMR data.

As AMR data becomes more widely used in scientific simulations,
visualization researchers have worked to address the corresponding
challenges encountered when visualizing such data. A key challenge
in visualizing BS-AMR data is how to reconstruct the data across
level boundaries to produce a continuous function. This reconstructed
function can then be visualized using volume rendering or by explicitly
extracting isosurfaces or rendering them implicitly.

2.1 Reconstruction Across Boundaries

Correctly reconstructing, or “stitching”, the BS-AMR data across ad-
jacent cells at different resolutions is a well-known and challenging
problem. A survey provided by Van Gelder and Wilhelms [37] intro-
duced various solutions to this problem, also sometimes referred to as
the T-junction problem in the literature [42]. Generally, the T-junction
problem produces discontinuities in the reconstructed field, leading to,
for example, holes in isosurfaces computed on the field or incorrect
colormapping when volume rendering. These errors in the reconstruc-
tion lead to incorrect interpretations of the simulation data. A desirable
reconstruction method should be able to interpolate a continuous func-
tion at any given point in the simulation domain, including across level
boundaries.

Weber et al. [42, 45] proposed a solution based on the dual grid
to generate a stitching mesh. To simplify their implementation, they
pre-compute a case table for stitching cell generation. Beyer et al. [5]
computed tetrahedral cells to stitch together the level boundaries of
cell-centered AMR grids (e.g., Figure 2d). Fang et al. [11] created a
“transition region” of pyramid cells to stitch between the levels. Al-
though these approaches resolve the T-junction problem, they introduce
new challenges with adding these unstructured elements and dealing
with the resulting unstructured mesh. Ljung et al. [22] proposed an
interblock interpolation technique for directly volume rendering mul-
tiresolution volumes. Recently, Wald et al. [38] detailed the T-junction
problem and introduced multiple reconstruction methods for direct
volume rendering of BS-AMR data. These solutions have different
characteristics and properties. For example, the basis method is suit-
able only for direct volume rendering and thus is not applicable for our
work.

Our octant reconstruction method employs a similar approach to
that of Ljung et al. [22] and Beyer et al. [5], but it is less restrictive in
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Fig. 2: (a) Trilinear interpolation is trivial on a vertex-centered single-
level grid. (b) A cell-centered single-level grid can be converted to a
vertex-centered grid by introducing dual cells. At the level boundaries
of vertex-centered AMR data (c), it is sufficient to introduce a layer of
ghost cells. (d) A cell-centered AMR grid can still be transformed using
dual cells; however, stitching across the boundary remains challenging.
Previous work has addressed the T-junction problem by introducing
unstructured elements at the boundary, shown in green.

that it supports an arbitrary number of grids. Moreover, our method
can leverage the optimized data query approach of Wald et al. [38].

2.2 Volume Rendering

Ma and Crockett [25] introduced the first high-quality AMR volume
rendering system, based on cell projection. Ma [24] further extended
this approach to support MPI parallel rendering, thereby achieving
better rendering performance. Norman et al. [29] proposed to leverage
the support of standard visualization tools for volume rendering finite-
element data to visualize AMR data by converting the AMR data
into finite-element hexahedral cells. However, this conversion incurs
both memory and computational costs. Park et al. [31] presented
a hierarchical multiresolution splatting technique to visualize AMR
data interactively on a single workstation. Wald et al. [38] recently
introduced an interactive method for CPU-based rendering of AMR
data within OSPRay.

On the GPU, Weber et al. [43, 44] presented an approach based on
cell projection for direct volume rendering of AMR data. Kähler and
Hege [15] introduced a 3D texture-based volume rendering algorithm
for AMR data that employs a space-partitioning scheme to decompose
the volume into axis-aligned regions of equal-sized cells. This approach,
although it achieves fast rendering performance, ignores the T-junction
problem at level boundaries. Kähler and Hege’s approach was further
extended to employ ray tracing in multiple rendering passses [16] and
finally in a single pass [14]. Gosink et al. [13] presented a visualization
system for time-varying AMR data on the GPU and designed an out-of-
core method to re-sample the data into nonadaptive grids. Marchesin
and de Verdiere [26] employed a special-case solution for high-quality
and semianalytical volume rendering of hexahedral cell data. Recently,
Leaf et al. [21] used a reconstruction method similar to that of Ljung et
al. [22] and provided a cluster- and GPU-parallel rendering scheme to
visualize large-scale AMR data in a distributed parallel setting.



2.3 Isosurface Rendering

Whether extracting the isosurface to a mesh [23], or rendering it with
an implicit method [33], the requirements placed on the reconstruction
method used to sample the AMR data are much stricter than in volume
rendering. Volume rendering tends to blur and smooth out features,
hiding some artifacts; however, any small cracks or discontinuities will
be readily apparent in a surface representation.

Marching cubes (MC) [23] has been applied to adaptive volumes
with a variety of methods proposed for fixing cracks encountered at
level boundaries. Shu et al. [35] extended the MC algorithm into the
adaptive MC algorithm and patched cracks with polygons of the same
shape. Westermann et al. [46] introduced an adaptive approach for iso-
surfacing regular volume data at arbitrary levels of detail and employed
triangle fans to fill in the cracks at boundaries. Fang et al. [11] subdi-
vided the lower resolution cell faces into pyramid elements to match
the higher resolution faces. These approaches, although they yielded a
crack-free isosurface, were applicable only for a vertex-centered mul-
tiresolution grid. For cell-centered AMR data, Weber at al. [42, 45]
first transformed the cell-centered AMR grid into a vertex-centered
grid by introducing dual cells and then stitched the boundary with an
unstructured mesh (see Figure 2d). However, explicitly tessellating the
isosurface can produce a large number of triangles, impacting rendering
performance and the time it takes to change the isovalue.

An alternative approach that addresses these limitations is to directly
ray trace an implicit representation of the isosurface [33]. A large body
of work has investigated ray tracing implicit isosurfaces on regular grid
volumes [19, 20, 33, 40]; however, relatively little work has explored
implicit isosurface rendering of BS-AMR data. Co et al. [8] mention the
applicability of their iso-splatting approach to AMR data, although this
has not been explored. Wald et al.’s AMR reconstruction kernels [38]
can be used for isosurface ray-tracing in OSPRay with the built-in
sample-based isosurface method; however, this approach yields poor
rendering quality and performance, as will be shown later.

3 RECONSTRUCTING BS-AMR DATA

In this section, we introduce a novel BS-AMR reconstruction strategy,
called the octant method, which will take a given sample point p =
(x,y,z) and map it to a scalar value F(p). BS-AMR data is specified as
a set of data bricks, each a grid (typically of 16×16×16 cells) with a
cell-centered data value associated with a refinement level L. Bricks
on the same level do not overlap, and on the coarsest level generally
form a structured grid that fills the entire domain. However, finer level
bricks overlap coarser ones, and the boundary of the finer level brick
aligns with the coarser level cell boundary, such that each coarser cell is
covered by exactly R×R×R finer cells, where R denotes the refinement
factor.

3.1 Methodology Overview

A range of interpolants are available from numerical analysis for use in
reconstructing a continuous field F(x) from a discrete set of data points.
For example, the nearest neighbor, linear and higher order basis func-
tion interpolation methods have been widely used in visualization and
computer graphics. However, these interpolation methods are highly
dependent on the underlying topology of the data being reconstructed,
making their application to BS-AMR grids more challenging than to
nonadaptive grids (Figure 2), due to the grid topology change at the
level boundaries. Computing a “correct” interpolant on BS-AMR data
is made more challenging due to the variety of formats and layouts em-
ployed. While there is currently no gold standard interpolation method
for AMR data, several key properties (ranked by importance) should
be considered when designing an interpolant:

1. Continuity, in particular across-level boundaries, is a key con-
cern, as discontinuities in F(x) can change the computed isosur-
face topology, resulting in undesirable artifacts.

2. Adaptivity denotes that it is desirable for the interpolant to have a
higher frequency in finer regions and a lower frequency in coarser
ones.
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Fig. 3: Reconstructing the sample value of P near the level boundary
would require combining results from multiple dual cells across different
levels (a). When using octants (b), P is contained in a single octant and
level, and we can simply perform trilinear interpolation.

D(0) D(x)

D(y) D(xy)

C

(a) A dual cell.

O(0)
O(x)

O(y) O(xy)

C

(b) An octant.

Fig. 4: A dual cell and an octant of the grid cell C. In nonboundary
regions, an octant of a cell is also an octant of a dual cell.

3. Accuracy requires that a reconstruction method should be inter-
polating, and, furthermore, that given an arbitrary sample point
x, the reconstructed value F(x) should be as close to the ground
truth as possible.

4. Locally Rectilinear means that the approach will decompose the
domain into a set of nonoverlapping rectilinear “cells” within
which the interpolant is locally trilinear, allowing for fast implicit
ray-isosurface intersections.

5. Simplicity indicates that the reconstruction kernel should be easy
to implement. A simpler kernel is more likely to perform well.

3.2 Octant Method

A key challenge of reconstructing cell-centered AMR data is that the
dual cells at different resolution levels do not line up and can even
reach across the level boundaries (Figure 3a). Taking ~p in Figure 3a as
an example, using dual cell D1, D2 or D3 to interpolate the value of ~p
will yield different results. We can address these issues by casting the
problem in terms of interpolating within the octants of cells (Figure 3b).
First, an octant does not extend beyond the bounds of its parent cell
and thus will not cross level boundaries. Second, the entire set of
octants completely tiles the domain, without gaps or overlap. Finally,
octants are rectilinear, freeing us from requiring unstructured elements
to stitch boundaries. Performing trilinear interpolation within each
octant yields an adaptive and locally rectilinear interpolation scheme.
Furthermore, we can achieve a continuous interpolant by taking some
care in choosing the values at the octant vertices at level boundaries.

To better explain the octant method, let us consider a logical cell
C. The cell is evenly split into eight octants {Oi, i ∈ 1,2 . . .8}, which

lie along one of eight unit vectors (±X̂ ,±Ŷ ,±Ẑ) from C’s center (Fig-

ure 4b). Of the eight vertices of each octant, O(0) coincides with the
cell center, whereas the others lie on the cell’s boundary (faces, edges
and corners). The boundary vertices are named based on the direction
in which they can be reached from the cell center. For example, the

vertices on C’s faces are labeled O(X), O(Y ), O(Z); those on C’s edges

are labeled O(XY ), O(Y Z), O(XZ); and those on C’s corners O(XY Z).
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Fig. 5: When sampling a point P on the fine side of a boundary (a), the octant vertices on the boundary, O(X) and O(XY ), are set by the coarse side.
To compute O(X), we shift it to the coarse side by ε to get Op′ and recursively initialize its vertex value. O(X) is then trilinearly interpolated within Op′ .
When sampling a point P′ on the coarse side of a boundary (b), the coarse side is free to set the interpolant at the boundary using the different
strategies presented, as the fine side will stitch to it, as discussed for (a). Here we illustrate the finest level lerp strategy.

Similarly, we can also compute the dual cell D (Figure 4a). We name
the eight vertices of D following the same scheme as for the octant

vertices: D(0) coincides with the cell center; D(X) lies along X̂ from

D(0), D(XY ) lies along (X̂ ,Ŷ ) and D(XY Z) along (X̂ ,Ŷ , Ẑ). It easy to see
the cells and dual cells form a symmetric relationship: the cell center
vertex is the corner vertex of the dual cell, the cell edge vertices are the
dual cell’s face vertices, etc.

In nonboundary regions, an octant of a cell is also an octant of a
dual cell. Therefore, we will get the same interpolant as with dual cells
when we use trilinear interpolation within the eight octants. Due to
the symmetry between cells and octants, this interpolant is trivial to

construct. Here are the rules: 1) O(0) carries the value of cell C since

it coincides with the cell center. 2) The face vertex O(X) lies exactly

halfway between C(0) and its neighbor cell along X̂ , C(X), and thus
its value should be the average of those two cells’ values. From the

symmetry of the cells and dual cells, the center of C(X) is D(X), and

thus O
(X)
v = 1

2 (D
(0)
v +D

(X)
v ). 3) The edge vertex O(XY ) lies exactly in

the center of the face spanned by C(0), C(X), C(Y ) and C(XY ) and thus
is the average of the values for those four cells. 4) The corner vertex

O(XY Z) is set to the average value of the eight vertices of D.

We can achieve a continuous interpolation across the boundaries if
we take the vertices of the finer side and set their value to whatever
the octant’s interpolant produces on the coarser side. Even in a three-
dimensional scenario, where the octant’s vertex may touch cells on
multiple different levels, the finer level octant’s vertices always fall
within the coarser level octant’s faces. Therefore, we will achieve
continuity across the boundary as long as the coarser side octant defines
the interpolant; however, this strategy will sacrifice some accuracy at
the boundary.

Octant Algorithm. The above strategy leads to an algorithm that
combines the stitching with the trilinear interpolant in coarse regions:
For any point ~p, we first find the leaf cell C and octant O it is contained
in, and its corresponding dual cell D on this level. In this octant, the

value of vertex O(0) is set to Cv. For those vertices on the edge of the
cell, there could be 2, 4 or 8 of D’s corners that are required to compute

their value, if we are in a nonboundary region. Taking O(XY ) as an

example, we would need to consider D(0), D(X), D(Y ) and D(XY ). If all
these inputs exist and are at the same level as C, then these vertices do

not lie on a boundary, and thus can be computed as in the nonboundary
case. Otherwise, if at least one of those inputs lies on a coarser level,
we know that this vertex lies on at least one boundary, with a coarser
cell on the other side. In this case, we will find the coarsest level
neighbor and construct a continuous stitching by setting the vertex’s
value with the interpolant from the coarser side. The searching of the
coarsest level neighbor could be easily realized by recursively calling
our sample function for the vertex position minutely moved along the
direction away from the octant’s cell center. If both cases do not hit,
we know that there exists at least one of those inputs that is involved
for an octant’s vertex but is an inner node, and yet no other input is on
a coarser level. Thus, we can infer that the vertex lies on a boundary
but is on the coarser side and therefore can determine the interpolant.
This description leads to the following algorithm:

float octant(P)
Octant oct = findLeafOctant(P)
Dual D = findDualCell(oct)
/* center vertex */
oct[0].v = C.v;
/* edge vertex */
int lXmin = min(D[0].l,D[X].l)
int lXmax = max(D[0].l,D[X].l)
if (lXmin == lXmax) /* not a boundary */
oct[X].v = avg(D[0].v,D[X].v);

else if (lxMin < oct.l) /* we’re fine side */
/* finer side: fill *FROM* coarse side*/
oct[X].v = octant(oct[X].p + eps * oct.dX)

else /* we’re coarse side */
〈Compute Coarser Side Vertex〉

/* face vertex */
int lXYmin = min(D[0].l,D[X].l,D[Y].l,D[XY].l)
... /* symmetric to above*/
/* corner vertex */
int lXYZmin = min(D[0].l,D[X].l,...)
... /* symmetric to above*/

Figure 5 illustrates the above procedure. To determine the value of ~p
using the octant method, octant Op and dual cell Dp, shown as red and
blue square, are initialized (Figure 5a). Unlike the simple calculation of

O(0)’s and O(Y )’s value by applying the previously mentioned rules, the

calculation of O(X)’s and O(XY )’s value requires an additional stitching

process since we detect that D(X).level < O.level. Then ~p′ is computed

by moving O(X) a bit to the coarser side and used for calculating octant
Op′ ’s logical coordinates. Subsequently, the vertex value of Op′ is
recursively initialized with the octant method. So far, the value of

O(X) can be achieved by trilinearly interpolating the original point OX



with octant Op′ ’s value, which is the same as the calculation of O(XY )’s
value.

Computing the Coarser Side Interpolant. How exactly we com-
pute the value for the coarser side octant Op′ is completely our choice.
Fortunately, whatever we set to those vertices, the above rules will guar-
antee that our interpolant is continuous, adaptive, accurate and locally
rectilinear. In this paper, we will introduce four options: coarsest level
lerp, current-level lerp, basis function and finest level lerp.

Coarsest Level Lerp. The most obvious way of setting the coarser-
side interpolant is to simply perform trilinear interpolation on the coars-
est level involved for any of the inputs. In the logical grid abstraction
of AMR data, we can still view each refinement level as a structure
grid [38]. Hence, we could pick cells in any logical cell and provide
an interface—lerpOnLevel—to trilinearly interpolate the value based
on the cell. In this case, we can even forgo the epsilon-offsetting and
directly call this trilinear interpolant for boundary vertices:

〈Compute Coarser Side Vertex〉 ≡
// ---------- edge vertex ----------
int lX’ = min(D[0’].l,D[X’].l)
if (lX’ == oct.l)
oct[X’].v = avg(D[0’].v,D[X’].v);

else
oct[X’].v = lerpOnLevel(lX’,oct[X’].p)

In most cases, the possibly multiple lerpOnLevel calls would all
find the same dual cell D. This case could obviously be detected and
replaced with directly averaging the respective inputs in a performance-
oriented implementation.

Current-Level Lerp. Given that it is easy to get the current level of a
cell at a point using findLeafCell, we could perform the interpolation
on the leaf cell, rather than the coarsest level cell. This strategy allows
for the interpolant to be adaptive.

〈Compute Coarser Side Vertex〉 ≡
// ---------- edge vertex ----------
int lX’ = min(D[0’].l,D[X’].l)
if (lX’ == oct.l)
oct[X’].v = avg(D[0’].v,D[X’].v);

else
int level = findLeafCell(oct[X’].p).l
oct[X’].v = lerpOnLevel(level,oct[X’].p)

Basis Functions. Setting the boundary to the above option is similar
to the blending method described in [38], which involves some inner
cell values at the boundary and therefore yields some ghosting. How-
ever, since we have full freedom on how exactly to set the coarser side
boundary, we can also set the coarser side’s octant vertices using any
other method. For example, we can compute these vertices using the
basis function method described in [38], which employs a hat-shaped
basis function to define the interpolant. This strategy will remove the
ghost artifacts, since the calculation involves actual leaf cells only on
the boundary; however, as described by Wald et al. [38], it is unclear
how to perform ray-isosurface intersections with this interpolant.

Finest Level Lerp. Perhaps the best alternative for computing the
coarser side interpolant is to use the finestLevelLerp. The vertex in
question lies exactly on at least one boundary and always right in the
center of any finest level logical dual cell. Therefore, the finest level
lerp computes the weighted average of all leaf cells that touch at this

point. For example, the value of O(X ′) in Figure 5b is filled with the
weighted average of V2,V3 and V4. This method, therefore, is not only
fast and trivially simple to code but also qualitatively one of the best
methods we have found so far, and it is used by default for calculating
the coarser side octant’s value in our results. It is implemented as
follows:

〈Compute Coarser Side Vertex〉 ≡
// ---------- edge vertex ----------
int lX’min = min(D[0].l,D[X’].l)
int lX’max = max(D[0].l,D[X’].l)
if (lX’min == lX’max) /* not a boundary */
oct[X’].v = avg(D[0].v,D[X’].v);

else
D’ = findDualCell(finest_l ,oct[X’].p)
oct[X’].v = avg(all D’.v)
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(a) Sample-based isosurface ray tracing.
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(b) Our “hybrid” implicit isosurface ray tracing.

Fig. 6: OSPRay’s current sample-based isosurface intersection method
(a) marches the ray through the volume and uses the rule of signs to find
the intersection, oversampling coarse regions and undersampling fine
ones in the case of AMR data. Our “hybrid” implicit isosurface method
(b) builds a BVH over the active voxels (or octants) of the volume and
uses Marmitt et al.’s ray-iso voxel intersection [27] within these voxels,
resulting in a faster and more accurate surface rendering.

3.3 Potential Numerical Issue

Although the octant method provides a continuous interpolant across
the level boundary in theory, it is still worth mentioning the potential
numerical issue when using limited-precision floating-point arithmetic.
The vertex value of the adjacent octant across the bounday might not
exactly agree in practice due to intermediate round-off error when
operations are performed on the same-source values in different orders,
such as calculating the vertex values in a pre-computing step and then
interpolating, as opposed to directly interpolating on the other side of
an abuting face. Although the numerical issue is theoretically possible,
we did not see it in practice in our experiments.

4 RAY TRACING IMPLICIT ISOSURFACES

Our octant reconstruction method is applicable to any use case that
requires sampling of BS-AMR data. For example, our method could
be used for explicit isosurface extraction by simply iterating over the
octants, computing each octant’s vertex values with our octant method
and applying marching cubes [23], treating each octant as a “voxel”.
Although this approach would certainly work, it would generate a
potentially very large number of triangles.

In a ray tracer, explicit tessellation can be avoided by employing an
implicit isosurface ray tracing method [19, 33, 40]. The simplest ap-
proach is to march the ray through the volume with a fixed-step size, and
at each step check if an intersection with the isosurface exists. OSPRay
currently employs this ray marching approach to render implicit isosur-
faces. However, this method is inherently nonadaptive, creating many
unnecessary samples in coarse regions, and an insufficient number
of samples in fine regions (Figure 6a), resulting in unnecessary high
costs and poor rendering quality. Instead, one can build an implicit
KD-tree [40] or implicit BVH [18, 39] over the voxels and use this ac-
celeration structure to quickly locate voxels that contain the isosurfaces
being rendered. The voxels containing the isosurface are referred to
as “active voxels”. A similar approach could be implemented with our
octant method by treating each octant as a “voxel”.

Although we initially considered this approach, several issues arise
when attempting to implement it within OSPRay. First, OSPRay heav-
ily relies on Embree for BVH construction and ray traversal; however,
Embree has no notion of implicit BVHs, requiring us instead to im-
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Fig. 7: When generating the octants, we can merge “inner octants” (i.e.,
those not touching a boundary) into dual cells (shaded), significantly
reduing memory consumption. We find that on the LandingGear, this
optimization reduces the total number of octants by 70.6%.

plement our own BVH construction and traversal kernels. Second,
a naı̈ve implementation of implicit BVHs usually has high memory
requirements, because typically a BVH has at least one node per input
voxel, which can significantly multiply the storage requirements. When
this multiplication is coupled with the fact that each AMR cell would
produce eight octants, the total memory cost of this approach becomes
prohibitive.

To address these issues, we adopted two different and orthogonal
strategies. First, we developed a “hybrid” implicit isosurface module
for OSPRay that is able to use Embree for BVH construction and
traversal and is applicable to general rectilinear volume data. Second,
we derive a series of optimizations (e.g., active octant filtering and
octant merging) specific to our octant method to reduce the number of
primitives we have to build the BVH over, further reducing memory
overhead.

4.1 “Hybrid” Implicit Isosurface Ray Tracing

The core idea of our hybrid implicit isosurface method is to combine
ideas from both explicit isosurface extraction and implicit isosurface
ray tracing. As in explicit isosurface extraction, we first extract a list
of all the active voxels and consider only those active voxels; yet like
implicit isosurface ray tracing, we then build a BVH over these active
voxels (using Embree), traverse rays through this BVH and perform
an implicit ray-isosurface intersections within each voxel, without ever
extracting any polygons (Figure 6b).

4.1.1 Voxels, Encoding and Active Voxel Sources

At the core of our method is an abstraction for viewing any structured
volume (e.g., regular grids, rectilinear grids, BS-AMR), as a collection
of logical voxels, where each voxel is a cube with trilinearly interpolated
scalar values at each of its vertices. In this case, each voxel can thus
be described by 12 values: three for its 3D coordinates, one for its
width and eight for its vertex values. Note that for general rectilinear
volumes we require two additional values to specify the height and
depth of the voxel. These voxels can be, for example, dual cells in a
structured volume or octants in a BS-AMR volume. Active voxels are
those whose value range contains at least one of the isovalues we are
interested in rendering.

With this abstraction, we can view any volume as simply a source
of active voxels, by assuming that there is some kind of entity—a
VoxelSource—which can quickly generate a list of active voxels in the
volume. This initial process works similar to the active voxel extraction
of explicit isosurface extraction methods. We will describe later in
Section 4.2.1 how we generate the voxels for our BS-AMR data.

Having to consider only the active voxels reduces memory use con-
siderably, as typically only a few of the total voxels are active. Nev-
ertheless, explicitly storing a full 12 floats for even just these voxels
would be prohibitively expensive. Therefore, our software abstraction
further assumes that each active voxel can be encoded into a single
64-bit value (e.g., as 21:21:21 bit coordinates in a structured volume).
The VoxelSource then offers an interface to retrieve the complete voxel
information from this 64-bit reference.

4.1.2 BVH Construction and Traversal

Since we now have to consider only the active voxels, we no longer
need any special BVH construction or traversal kernel and can simply
use Embree. To do so, we first use the VoxelSource to produce a list
of all active voxels, storing the 64-bit reference for each active voxel.
We then create an Embree “user geometry” with as many primitives as
active voxels, and within the geometry’s getBounds callback query the
VoxelSource for the respective voxel’s bounding box to allow Embree
to build a BVH over the voxels.

4.1.3 Ray Voxel Intersection

To perform the actual ray-voxel intersection, we implemented an ISPC
version of the ray-iso voxel intersection technique proposed by Marmitt
et al. [27] and used this as our Embree user geometry’s intersection
routine. As with the bounding box callback, we first have to query the
full voxel data for the 64-bit reference from the VoxelSource.

Based on how ISPC and Embree’s intersection callbacks work, this
ISPC implementation will always intersect the same voxel with either
4-, 8- or 16-wide ray “packets” in packet mode. Given the (very) small
nature of each of our voxels, we are fully aware that the number of
rays active during intersection will hardly ever be much larger than one,
which is clearly wasteful. However, any alternative of intersecting eight
different voxels would require significant changes to Embree, which is
beyond the scope of this paper.

4.2 Application to Our Octant Method

As mentioned previously, to apply our hybrid implicit isosurface
method to AMR data reconstructed using our octant method, we can
simply implement a VoxelSource that encodes each octant as a “voxel”.

4.2.1 Octant Decomposition and Initialization

Although the core idea of our approach is straightforward, some care
must be taken to efficiently extract the active octants from large AMR
datasets. To allow efficient access to the AMR cells, we employ the
AMR-KDTree introduced by Wald et al. [38]. This AMR-KDTree can
be built over whatever external memory is used to store the brick’s cells,
introducing little memory or compute overhead. The structure of the
AMR-KDTree is as follows:

• A leaf in the tree represents a region where all cells come from
the same brick. Note that the brick will likely stick out of the
leaf’s bounding box, and the same brick may be listed in multiple
leaves.

• A leaf node stores a pointer to the finest level brick along with
pointers to the coarser bricks that overlap the region.

• A leaf node stores the value range of its finest level cells, which
can be used for filtering leaves that do not contain the isovalue.

On top of this AMR-KDTree, the active octant extraction is particu-
larly easy to implement. A naı̈ve first approach could traverse all leaves
of the tree, ignoring those that do not contain the isovalue, and decom-
pose each cell of the finest brick in the leaf into eight octants using our
octant to compute the values of the octant’s vertices. Although this
naı̈ve approach will extract a correct crack-free isosurface, it will lead
to a large amount of redundant computation. Specifically, the vertex
values of “inner” octants will be re-computed eight times, as they are
shared with eight other octants

4.2.2 Optimized Octant Generation

In nonboundary regions, an “inner” octant is also an octant of the
corresponding dual cell. Thus, we can reduce the number of octants
we need to process by merging these “inner” octants into dual cells,
without affecting the isosurface. We illustrate this optimization in
Figure 7: the inner octants (shaded blue) can be merged into dual cells;
however, octants touching a level boundary cannot be merged.

With this optimization, we reduce the number of octants processed
on the LandingGear (Figure 1, right) by 70.6%, from roughly 2 bil-
lion to 616 million. Furthermore, the redundant computation of the
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Fig. 8: A 2D comparison of the reconstruction methods of Wald et al. [38]
(a-e) with our Octant method (f). Isocontours are drawn at 0.25, 0.5 and
0.75, in blue, green and white, respectively. (a) Coarsest loses data in the
fine region (dashed box), leading to cracks in the surface. (b) Current is
discontinuous at level boundaries (dashed box), also resulting in cracks.
(c) Finest is accurate but not adaptive. Furthermore, values along ~AB

are not linearly interpolated. (d) Blend results in “ghost” artifacts in some
regions. (e) Basis works well but is not locally rectilinear and thus is
not applicable to isosurface ray tracing. (f) Our Octant method provides
quality similar to (e) and is continuous, adaptive, locally rectilinear and
simple to implement.

“inner” octant’s shared vertices (e.g., point A in Figure 7) can also be
avoided. The merged dual cell’s vertices coincide with the cell centers
and can simply be set to the cell values. This optimization yields a
64.76% improvement in performance on the LandingGear data. Ad-
ditional performance improvement can be achieved by computing the
list of active octants in parallel; in our implementation we use TBB’s
parallel_for. To encode our octants in the 64-bit reference used
by the VoxelSource, we store them as 32:32 bits, with the first 32 bits
encoding the AMR-KDTree leaf index and the second 32 encoding the
octant ID within the leaf.

4.2.3 OSPRay Integration

Although our approach can be realized in any ray tracer, we evaluate our
method implemented within the OSPRay ray tracing framework [41].
OSPRay already includes the previously discussed AMR volume and
AMR-KDTRee structure presented by Wald et al. [38], allowing us to
easily re-use them. To integrate our approach, we extend OSPRay with
a module implementing our hybrid implicit isosurface geometry, which
can take any rectilinear volume as a VoxelSource and extend OSPRay’s
AMR volume to implement our octant method.

5 RESULTS

In this section, we first compare the quality of our reconstruction
method with prior work [38] using a 2D visualization tool (Section 5.1).
Next, we evaluate our approach according to two criteria: rendering
quality (Section 5.2) and performance (Section 5.3).

Evaluation Hardware. We conduct our evaluation on three different
systems. FSM is quad-socket workstation with four Xeon E7-8890
v3 CPUs, for a total of 72 physical cores at 2.5 GHz, along with
1.4 TB RAM. Lago is a Skylake Xeon workstation equipped with one
Intel Xeon Skylake Processor (Gold 6136), for a total of 24 physical
cores at 3.0 GHz, along with 256 GB RAM. Stampede2 is the largest
supercomputer at the Texas Advanced Computing Center (TACC) and
is composed of 4,200 Xeon Phi 7250 Knights Landing (KNL) nodes
and 1,736 Skylake Xeon Platinum 8160 nodes (SKX). Each KNL node
has 96 GB RAM and 68 physical cores, and each SKX node has 192 GB
RAM and 48 physical cores over two sockets. The nodes are connected
with an Intel Omni-Path network configured in a fat tree topology with

six core switches.

Data Description. We use two BS-AMR datasets in our evaluation.
The Black Hole Merger (BHM) is a GR-Chombo [7] simulation of the
gravitational waves resulting from the collision of two black holes. The
BHM is 28 GB, consisting of 4,114 data blocks and four refinement
levels. The finer refinement levels are concentrated at the center of
the domain where the black holes merge. The LandingGear (LG) is a
dataset produced by NASA using LAVA [17] to simulate the air flow
around a aircraft’s landing gear assembly. The LandingGear is 57 GB,
consisting of 72,865 blocks and nine refinement levels.

5.1 2D Comparison of Reconstruction Methods

To demonstrate and compare the multiple reconstruction techniques
discussed, we developed a 2D AMR reconstruction kernel visualization
tool, which implements the five kernels proposed by Wald et al. [38]
(the coarsest, current, finest, blend and basis methods), along with our
octant method. We show a comparison on a simple case in Figure 8;
here we compare on a two-level BS-AMR grid where cell values are 1
(blue, solid circle) or 0 (light green, open circle). To demonstrate the
isosurface that would be reconstructed with these methods, we draw
isocontours at values of 0.25, 0.5 and 0.75, which are shown in blue,
green and white.

We observe that the coarsest method is not adaptive and loses data
in refined regions, since it interpolates using the value at the coars-
ests level. In contrast, the current method preserves the raw data but
produces a discontinuity at the level boundary, leading to cracks in
the surface. The finest method provides high-quality results, but it

is not linearly interpolating in some regions (along ~AB) and is costly
to compute. The blend method combines multiple levels but leads to
“ghost” artifacts, as it involves interpolating the values of some inner
cells. The basis method and our octant method provide similar quality
and are both continuous and adaptive. However, the basis method is not
locally rectilinear, and thus it is unclear how to formulate ray-isosurface
intersections when using it.

5.2 Rendering Quality

Two factors affect the quality of the isosurfaces rendered by our ap-
proach: the choice of the reconstruction kernel and the choice of the
implicit isosurface ray tracing strategy. We compare the previous
sampling kernels of Wald et al. [38] that are applicable to isosurface
rendering with our octant method and evaluate the quality of our hybrid
implicit isosurface module against OSPRay’s current sample-based
isosurface module.

5.2.1 Octant vs. Other Reconstruction Methods

To generate a crack-free isosurface, the reconstruction of the field
produced by the sampling method must be continuous. In particular,
the “stitching” strategy employed at the level boundaries must provide
a continuous interpolation between the levels; otherwise, visible cracks
will be produced in the surface at these boundaries. We compare our
octant reconstruction method against current and nearest methods
proposed by Wald et al. [38]. Compared to these prior reconstruction
methods with two gigscale BS-AMR data, we find that only our octant
method can reconstruct a correct, crack-free isosurface (see Figure 9).

Although Wald et al. [38] propose an additional three methods—the
finest, blend and basis methods—these are either not applicable to
isosurface rendering or not feasible to use for generating an isosurface.
Although reported to provide good image quality [38], the lack of
adaptivity in the finest method would require up-sampling the dataset
to build the isosurface BVH over all the finest level voxels, which is
not feasible for the majority of BS-AMR data. For example, the width
of a cell at the finest level of the LandingGear is 0.00024 times that of
the coarsest. Re-sampling the entire domain to this resolution would
require roughly 1015 voxels, or 4.3 PB of memory. The blend and basis
methods are not applicable to isosurface rendering, as it is unclear how
to formulate ray-isosurface intersection with them.
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Fig. 9: A comparison of the isosurfaces produced by two reconstruction kernels from Wald et al. [38] (a,b,d,e) and our method (c,f) on the Black Hole
Merger (BHM) and LandingGear (LG) datasets. (a,d) Nearest is similar to nearest-neighbor filtering, resulting in discontinuities even within the same
level. (b,e) Current provides better interpolation within a level but still has discontinuites at level boundaries. (c,f) Our Octant method provides a
continuous stitching across level boundaries, producing a crack-free isosurface even between levels.

Fig. 10: Left: OSPRay’s current ray marching-based isosurface rendering
method frequently misses the surface, resulting in holes, missing features
and less surface detail. Right: Our hybrid implicit isosurface ray tracing
method yields a high-quality, crack-free isosurface, at better framerates.

Fig. 11: Our hybrid isosurface method is integrated into OSPRay as a
geometry type, allowing users to create high-quality, interactive visualiza-
tions. Here we show a semitransparent rendering of the LandingGear
isosurface, combined with the volume data and the landing gear as-
sembly. Both the isosurface and volume use our octant reconstruction
method to sample the data. This image is rendered at 2.2 FPS with
1024×768 framebuffer, using OSPRay’s SciVis renderer.

5.2.2 Hybrid vs. Sample-Based Isosurface Method

To evaluate the quality of the isosurfaces produced by our proposed
hybrid method, we compare the rendering quality of the hybrid im-
plicit isosurface with OSPRay’s built-in sampling-based method on the
LandingGear using our octant reconstruction method (see Figure 10).
While both approaches yield a crack-free isosurface at the boundary,
the sample-based method frequently misses the surface and loses key
features of the data, resulting in a potentially misleading visualization.
In addition, we find that our hybrid implicit isosurface module presents
more detail on the surface in refined regions. This is due to the fixed
step-size of the sample-based method being too large for these refined
regions of the data.

5.2.3 Advanced Capabilities

We show our application has the capability of simultaneously direct
volume rendering and isosurfacing gigascale BS-AMR data. Figure 11
demonstrates the simultaneous visualization of LandingGear data on
FSM. We achieve a framerate of 2.2 FPS with a 1024×768 framebuffer
when using OSPRay’s SciVis renderer. Furthermore, our application is
capable of visualizing multiple transparent isosurfaces simultaneously.
In Figure 1 (left), we show two transparent isosurfaces on the Black
Hole Merger dataset.

5.3 Performance Evaluation

We evaluate the rendering performance of our octant method and hy-
brid implicit isosurface ray tracing approach on the three previously
mentioned hardware platforms. The benchmarks were done by ren-
dering to a 1024×768 framebuffer with OSPRay’s adaptive sampling
enabled. We render a single warm-up frame and then take the average
framerate over 100 frames. We report rendering performance on both
the Black Hole Merger and LandingGear datasets, and we compare the
current method [38] with our octant method and our hybrid implicit
isosurface method against OSPRay’s built-in sample-based method in
Table 1. Our comparisons are also done with two different renderers in
OSPRay, the SciVis and pathtracer (pt) renderers. The SciVis renderer
is a standard scientific visualization style renderer, supporting shadows
and ambient occlusion, whereas the pathtracer is a photorealistic global
illumination renderer.



Lago FSM 32× Stampede2-SKX

Data-Isosurface Method Reconstruction Method SciVis pt SciVis pt SciVis pt

BHM-Hybrid
octant 23.09 4.29 69.37 16.18 348.83 61.73
current 23.40 4.37 68.83 16.05 354.45 61.40

BHM-Sample
octant 0.44 0.06 8.28 0.35 11.91 1.54
current 0.56 0.07 7.29 0.45 11.95 1.54

LG-Hybrid
octant 6.15 0.65 33.14 3.09 121.61 10.09
current 8.28 0.72 32.53 3.09 120.22 10.06

LG-Sample
octant 0.12 0.04 1.19 0.22 10.10 2.31
current 0.28 0.08 2.38 0.49 10.12 2.31

Table 1: Rendering performance in frames per second (FPS) of the different isosurface ray tracing methods and AMR reconstruction methods on the
Black Hole Merger (BHM) and LandingGear (LG) datasets. The benchmarks were run using OSPRay’s SciVis and pathtracer (pt) renderers, with a
1024×768 framebuffer. Our octant reconstruction method performs similar to the current method [38] while providing better visual quality. Moreover,
our hybrid isosurface ray tracing method yields significant performance improvements compared to OSPRay’s built-in sample-based method.

We find that our octant method provides similar rendering perfor-
mance to that of the current method, but produces a crack-free iso-
surface. When comparing the performance of our hybrid implicit
isosurface module to the OSPRay’s sample-based method, we find a
significant performance improvement of one to two orders of magni-
tude. In addition to the single node runs on Lago and FSM, we leverage
OSPRay’s support for data-replicated rendering using MPI to run on
32 Stampede2 Skylake Xeon nodes, and achieve interactive render-
ing with our proposed approach even in the most expensive rendering
configurations (i.e., with path tracing).

Our approach is also capable of quickly recomputing the active oc-
tants, allowing for semi-interactive changes to the isovalue. On the
Black Hole Merger dataset, our method takes 1.58s to generate and
initialize the active octants, whereas on the LandingGear it requires
6.83s. The BVH is then built over these active octants using Embree,
which can process approximately 110 million primitives per second.
The BVH build time is less than a second in our experiments. Our
approach allows for more interactive exploration of large data with
fast isosurface updates, compared to explicit isosurface extraction ap-
proaches. Furthermore, by computing the active octants on the fly, and
storing a minimal 64-bit reference for each such octant, we require only
10 GB of storage for the LandingGear isosurface.

Overall, we found that mid-gigascale BS-AMR data, such as the
57 GB LandingGear, can be rendered interactively on a single node with
our approach. Larger AMR data could be handled with large-memory
single node resources, or with parallel rendering on HPC platforms.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented an efficient solution for ray tracing
implicit isosurfaces of BS-AMR data. Our method is based on a novel
reconstruction method—the octant method—which allows us to recon-
struct crack-free isosurfaces, even across refinement levels, without
introducing unstructured elements at the boundaries. Combined with
our hybrid implicit isosurface ray tracing method, we enable interac-
tive, high-quality visualization of gigascale BS-AMR datasets, with
relatively low memory overhead. Furthermore, our optimized octant
extraction method enables semi-interactive isovalue changes. Finally,
the hybrid implicit isosurface method presented is applicable to any rec-
tilinear volume data, providing better quality and higher performance
isosurface rendering than OSPRay’s built-in ray marching approach.

By integrating our approach into OSPRay as a geometry type, we
can easily create combined visualizations, displaying the original vol-
ume and simulation mesh data to provide context. We can also leverage
OSPRay’s support for transparent MPI-parallel data-replicated render-
ing to distribute work over multiple nodes. Our OSPRay module can
also be leveraged by existing work integrating OSPRay into ParaView
and VTK, to provide similar results to production visualization users.

Although our technique can produce high-quality isosurfaces of
BS-AMR data, some issues remain to be addressed. First, we would
like to investigate further optimizations of the active octant extraction,
to provide faster isovalue updates. As isosurface exploration is a key
mode of visualizing scientific data, the ability to quickly explore the

field is important. Additional work can be done to further reduce the
memory consumption of our method. In addition to allowing for larger
data to be explored on a single machine, this could also make our
approach applicable to in situ use cases. Additional improvements can
also be explored to improve our reconstruction method. While capable
of computing crack-free isosurfaces, the computed surface normals can
be discontinuous, producing some subtle shading artifacts. Finally, it
would also be interesting to extend our work to apply for time-varying
distributed AMR data, to allow for interactive visualization of large
time-series datasets.
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