Spatially-aware Parallel 1/0 for Particle Data

Sidharth Kumar
sid14@uab.edu
University of Alabama at Birmingham

Will Usher
will@sci.utah.edu
SCI Institute, University of Utah

ABSTRACT

Particle data are used across a diverse set of large scale simula-
tions, for example, in cosmology, molecular dynamics and com-
bustion. At scale these applications generate tremendous amounts
of data, which is often saved in an unstructured format that does
not preserve spatial locality; resulting in poor read performance
for post-processing analysis and visualization tasks, which typi-
cally make spatial queries. In this work, we explore some of the
challenges of large scale particle data management, and introduce
new techniques to perform scalable, spatially-aware write and read
operations. We propose an adaptive aggregation technique to im-
prove the performance of data aggregation, for both uniform and
non-uniform particle distributions. Furthermore, we enable efficient
read operations by employing a level of detail re-ordering and a
multi-resolution layout. Finally, we demonstrate the scalability of
our techniques with experiments on large scale simulation work-
loads up to 256K cores on two different leadership supercomputers,
Mira and Theta.

1 INTRODUCTION

The continuing growth in computational power available on HPC
systems has allowed for increasingly higher resolution simulations.
As these simulations grow in size, the amount of data produced
grows correspondingly, challenging existing I/O strategies. To ad-
dress these issues, a large body of work has explored scalable I/O
strategies for uniform grid data [1-5], and AMR data [6]; however,
relatively little has focused on particle data. Particles are widely
used in the simulation community, with large scale runs producing
datasets of millions to billions of particles [7-9].

When considering an I/O strategy for particle simulations, porta-
bility and scalability are key concerns. The requirement of porta-
bility is straightforward: different I/O systems and network archi-
tectures may require different strategies, and the I/O system must
provide the flexibility to adjust for these differences. With regard
to scalability, it is desirable that the I/O strategy support both high-
throughput parallel writes, essential for checkpointing and saving
results, as well as low-latency reads, required for post-processing
analysis and visualization tasks. However, developing an efficient
end-to-end I/O strategy is difficult, as the needs of writes and reads
are often at odds with each other. The two tasks have contrasting
file-access patterns, and are often executed on different systems,
with different levels of parallelism. These contrasting demands are
difficult to satisfy simultaneously, and existing I/O methods for
particles [1, 3, 9-12] struggle to do so.

Steve Petruzza
spetruzza@sci.utah.edu
SCI Institute, University of Utah

Valerio Pascucci
pascucci@sci.utah.edu
SCI Institute, University of Utah

Figure 1: A distributed simulation on 36 processes (left). The particle
data is aggregated from 36 to 4 processes without spatial awareness
(middle, grouped by color), producing output files with poor spatial
locality. Our spatially aware aggregation (right), produces files with
a spatial layout better suited to visualization reads.

To achieve high-throughput writes, current I/O libraries—both
for particles and in general—use two-phase I/O [6, 13, 14] and sub-
filing [10-12]. Two-phase I/O is a technique in which data is moved
(or aggregated) across the fast interconnect onto a few chosen
aggregator processes before being written to disk. Subfiling is a
similar optimization technique, which controls the total number
of files across which data is written. However, neither subfiling
nor two-phase I/O explicitly enforce spatial locality when writing
data to files (see Figure 1). As a result, subsequent visualization and
analysis reads performed on fewer processes may need to make
unaligned, suboptimal accesses to the files to load the data. Fur-
thermore, particle data can have a highly non-uniform distribution,
which a spatially unaware approach will be unable to account for
and adapt to.

When working with large-scale simulations, it is often the case
that the data does not fit in the available memory, e.g., when using
a single workstation for visualization. To allow low latency and low
memory visualization of such large-scale datasets, it is common to
employ a level of detail [15-19] and multiresolution [15-18, 20-23]
strategy, which organizes the data to enable fast reads of representa-
tive subsets. However, existing I/O strategies for particle data do not
re-organize the particles to support such functionality when writing
to disk. Thus, a typical scientific workflow for particle simulations
involves a costly data conversion step [15-18, 23], to transform the
data into a format suitable for analysis and visualization.

An ideal system for scalable parallel I/O should support both
scalable writes and reads across a range of levels of parallelism and
HPC system architectures. To reduce loading latency and allow
for data streaming and progressive access, the file format used
should also support fast spatial and hierarchical read queries. In
this paper, we address these needs with a spatially-aware parallel
I/O framework, which keeps communication to a minimum and
ensures that only spatially near particles are grouped together

during aggregation. The output of this approach are files with good
spatial locality, which are well suited for visualization and analysis
tasks. In particular, this is the first work that tries to solve the
problem of simultaneously attaining both high-bandwidth parallel
I/O and low-latency visualization-appropriate reads for particle
data. Our contributions are:

o A file format which allows efficient visualization and analysis
queries, by leveraging the data locality and hierarchy in the
file; and

o A spatially aware adaptive aggregation I/O strategy to write
particle data in this format, while still achieving high through-
put.

Finally, we report on extensive I/O performance experimentation
using datasets representative of common particle-based simulations,
where our approach yielded maximum achievable throughput on
Theta [24], and 50% of the maximum throughput on Mira [25] using
1/3 of the system.

2 RELATED WORK

While scalable I/O for grid-based and structured datasets has been
widely explored, less work has focused on particle data, in part
due to the challenges of working with the unstructured and un-
evenly distributed nature of the data. Common approaches for I/O
of particle data use either a single shared file [8, 12, 26], or a file
per-process [7]. While such approaches can work well on a single
HPC resource, or provide tolerable performance at some scales,
both methods are known to not scale to large core counts, or be
portable to machines with different I/O architectures.

To improve I/O performance and reduce latency for visualization
and analysis tasks, a wide range of visualization focused file formats
have been proposed. A common trend among all such formats is
that they provide both a hierarchical representation, and reorganize
the data for better spatial coherence. To visualize large cosmological
datasets, Fraedrich et al. [15] construct a multi-resolution hierarchy
as a post-process task, which optimizes for level of detail and fast
read performance. Similar efforts by Reichl et al. [17], Schatz et
al. [16] and Rizzi et al. [18] have presented interactive, level of detail
based visualization methods for large scale cosmology simulations,
all based on either a post-process data conversion [16, 17] or a re-
sorting process, which is run when the visualization task starts [18].
Wald et al. [23] presented a low memory overhead acceleration
structure and file format for particle visualization, which is also
constructed by re-sorting the data in a post-processing step.

Although such visualization focused file formats have been
shown to be highly effective, they each require some up front data
conversion or processing step to be run, either as a pre-process
or when the application launches. These pre-processing steps can
take time ranging from hours [15], to a day [17] or a week [16],
depending on the output format and data size. This additional con-
version step is time consuming, and requires making a duplicate
copy of the data, both of which become more expensive as the data
size increases. Thus, outputting the data from the simulation in a
format which is natively optimized for visualization tasks is clearly
desirable, to eliminate this bottleneck.

Recent work on scalable I/O for particle data has leveraged sub-
filing [9, 10] to improve scalability. Habib et al. [9] use an approach

on IBM Blue Gene/Q which groups processes by their I/O node to
determine the sub-filing assignment, to aggregate data for cosmol-
ogy simulations with up to 1 trillion particles (47TB) and report
achieving up to 118GB/s bandwidth.

2.1 Parallel HDF5

Byna et al. [10] examine tuning HDF5’s built in support for sub-
filing on two particle simulation I/O kernels. While HDF5’s sub-
filing improves performance over a single shared file, Byna et al.
report encountering significant limitations with HDF5’s sub-filing.
Specifically, they report errors running at more than 32K processes
or beyond certain sub-file counts and region data sizes. They report
reaching 67% and 28% of peak bandwidth at 16,384 cores on Edison
and Cori respectively, with our approach (Section 5) we achieve
49% and 100% of peak bandwidth at 256k cores on Mira and Theta,
respectively. Furthermore, the files written by Byna et al. are not
suitable to post-process visualization at lower core counts, as they
report the number of reader processes and sub-filing factor must
match the write configuration. Our approach (Section 5) on the
other hand allows reads with different core counts than were used to
write the data, and at different aggregation grids, which as reported
in [10] is not possible with HDF5’s subfiling approach. Furthermore,
Our approach allows users to read data at varying LODs a feature
not provided by other I/O systems. We also compare parallel HDF’s
performance with our I/O system in Section 5.2.

3 SPATIALLY AWARE TWO-PHASE I/O

Sub-filing and two-phase I/O are commonly employed aggregation
techniques to balance the tradeoff between file per-process and sin-
gle file (i.e., collective) I/O. However, existing I/O systems typically
treat particle data as a stream of bytes, and ignore spatial corre-
spondence in the data when applying sub-filing and two-phase I/O.
Without spatial domain knowledge, it is possible that processes with
particle data from distant regions of the domain will be grouped
into the same file, producing a poor spatial mapping of the data
on disk. Such groupings can occur when using methods which
only consider the network topology in determining the aggrega-
tors, as the best decomposition in this sense is not necessarily a
good decomposition of the particles (Figure 1). Files written without
spatial knowledge can incur in significant costs when used for post-
process analysis and visualization. For example, if the user wants
to perform distributed rendering on four nodes the spatially-aware
mapping of the data in Figure 1 requires only a single file to be
read by each process, while the spatially unaware mapping requires
each process to read two files and perform more seek operations
within those files. It is important to note that along with rendering,
a range of standard analysis and visualization tasks are dependent
on region-based queries, e.g.: nearest neighbour search, vector field
integration, stencil operations, image processing.

There are two main challenges in designing a spatially aware I/O
strategy: creating a mapping between the location of a particle and
its location in the file, and using the mapping to create a spatially
aware data aggregation phase. For structured data (i.e., grids) there
exists a direct, one-to-one mapping between a voxel’s 3D index
to a location in the file. Voxels then can be mapped to locations
in the file using some ordering scheme, e.g., row-order, Z-order,

Spatially-aware aggregation

Data reorganization (LOD setup) File I/O
A |

° o
o5 ©
068 P8o
o o 0%
=] oo
o
o2 §o
o o 0o
°
o
° o OO o
e S R o° Aggregation 5 Particle
o o > | & setup o o S Exchange
o ° o o

Rank: Particle array

11 1 1 !
%% 9%e%e Tof Data Files
° B
0© Oooo o0 098
© o0 S ool © o
P X ‘ Py Py Pg .. P Ps 8 @
) P, P, P, P, P, +
P, P

Daty 3 Pg Py '
Reordering 7 +n2 PS """ Pl PS File IO Metadata File

Aggregated particle array D

P, P, P, ...P,, P,

Figure 2: An illustration of our two-phase I/O approach, which takes spatial locality into consideration.

or HZ-order. However, the unstructured nature and unbalanced
distribution of particle data makes it difficult to define a similar
fine-grained mapping in general. Furthermore, moving particles
over the network during the aggregation phase is more challenging
than for structured data. While for structured data the bounds of
any data packet can be directly used to identify which aggregator
process it belongs to and where in that aggregator’s buffer it will
be placed, there is no such correspondence for bulk communication
of particle data. If a process’s data is split into two aggregators,
it must loop through the particles to determine which aggregator
they belong to.

We tackle these challenges by first building a correspondence
between a particle’s spatial location and its position in the file. To
this end we begin by imposing a rectilinear 3D-grid—referred to as
the aggregation-grid—on the simulation domain. The aggregation-
grid spatially partitions the simulation domain into a mesh of axis-
aligned 3D-boxes, which we refer to as aggregation partitions. We
assign a processor-rank r to each of these aggregation partitions.
The aggregation-grid spans the entire simulation domain, placing
each particle within a unique aggregation partition. With this setup
we initiate the particle exchange phase, where all particles residing
within an aggregation partition are transferred to the process r
assigned to the partition. At the end of this phase, all particles
residing within an aggregation partition are aggregated to a single
process. Next, we re-order the aggregated particles into a level of
detail ordering. The level of detail ordering is used when reading
data to support multi-resolution queries, for streaming and from
low-memory systems. Finally, each process holding the aggregated
data writes the buffer out to an independent file. These output files
contain particles which are spatially local, and contained within a
disjoint sub-region of the domain.

Our system is flexible enough to handle aggregation-grids that
are not aligned with simulation’s partitioning of the domain, in
which case a process might have to send data to multiple aggrega-
tors. However, this requires each process loop through its set of
particles to determine which aggregator they belong to. For a uni-
form resolution simulation, where every process works on patches
of equal size, we ensure that the aggregation-grid is always aligned
with the simulation grid. By aligning the aggregation-grid with the
simulation’s we avoid needing to filter the particles, while preserv-
ing communication locality and minimizing data movement during

the aggregation phase. We note that our aggregation scheme is
not limited to uniform domain decompositions, and can easily ad-
just to adaptive resolution simulations, or simulations with uneven
distributions of particles (see Section 6).

We discuss an example of our I/O scheme on a 2D simulation
in Figure 2. The simulation partitions the domain into a uniform
grid, with some set of particles within each patch, colored by their
rank. In the aggregation step, we impose an aggregation-grid com-
posed of four aggregation partitions on the domain, with each ag-
gregation partition owned by a specific rank. The particles within
each aggregation partition are colored by the aggregator assigned
to the region (black, yellow, green, purple). The particles within
each region are then sent to the owner of the aggregation partition,
which re-orders the particles into the desired level of detail order-
ing. Finally, each aggregator writes its particle data independently
to a separate file. The I/O scheme can be broken down into the
following steps, which we discuss in the following sections.

(1) Setup aggregation-grid (Section 3.1)

(2) Select aggregators (Section 3.2)

(3) Exchange metadata and data (Section 3.3)
(4) Allocate aggregation buffer (Section 3.3)
(5) Particle exchange (Section 3.3)

(6) Particle shuffling for LOD (Section 3.4)
(7) Write data to file (Section 3.4)

(8) Write spatial metadata (Section 3.5)

3.1 Aggregation-Grid Setup

We begin by imposing an aggregation-grid on the simulation do-
main. To align the imposed grid with the simulation’s domain
partitioning we enforce that the aggregation-grid starts at the same
coordinate as the simulation grid, and set the aggregation partition
size to an integer multiple of the per-process domain size.

We define the aggregation partition factor, abbreviated as Py,
Py, P, as the ratio of the size of an aggregation partition to the
simulation’s patch size in the x, y and z dimensions, respectively.
The aggregation partition factor (Py, Py, P;) impacts both the de-
gree of network traffic during the aggregation phase and the total
number of outputted files. In particular the total number of out-
putted files is f = (nx/Px) X (ny/Py). For example with 4 X 4 = 16
processes and Py X Py = 2 X 2, the total number of generated files
will be (4/2) X (4/2) = 4 (see Figure 3e). Alternatively, choosing

(b) (c)

Figure 3: The choice of aggregation-grid size is directly tied to the
number of files produced, and the amount of communication. Ag-
gregating the particles (a) with configuration: (b) 2x4 outputs 8 files,
(c) 1x4 outputs 4, (d) 4x4 is equivalent to file per-process, (e) 2x2 also
outputs 4 files, (f) is equivalent to shared file I/O. The best configu-
ration is both machine and workload dependent, and is exposed as
a tuning parameter to users.

Px X Py X P, = 1X1X 1 corresponds to an extreme where each of
the aggregation partitions and the process patches are the same,
and is equivalent to file per-process I/O (see Figure 3d). At the
other extreme, the aggregation partition can be set to be the same
size as the entire domain, resulting in an all-to-one aggregation
which will save out a single file, equivalent to single shared file I/O.
For most scenarios, the latter configuration is not feasible due to
limitations in the available memory on a single core. Note that a
process’s patch offset and size in a particle simulation represents
the spatial boundary within which all the particles on that process
are contained. Although this size and offset information is typically
available from the simulation, the I/O system can easily compute
this information by finding the bounding box of the particles on
the process.

The amount of communication performed during aggregation
is also dependent on the partition factor. As shown in Figure 3,
communication during the data aggregation phase is localized to
each aggregation partition, confined to a group of Py X Py X P,
processes. Therefore, increasing the partition factor along an axis
will lead to communication between a larger number of processes.
The best partition factor is dependent on multiple factors, such
as the machine’s I/O architecture and network topology, and the
number of particles and variables in the simulation. To allow users
to adjust performance to best suit their platform and simulation,
we expose the partition factor as a tuneable parameter, and conduct
a detailed sensitivity study in our evaluation (Section 5).

3.2 Aggregator Selection

With the aggregation partition factor set, the next step is to se-
lect the aggregator processes. We assign one process for each ag-
gregation partition to be responsible for receiving data from the
other processes, and saving it to disk. These aggregators are cho-
sen uniformly from the rank space, to ensure even utilization of
the network. For example, with 16 participating processes and 4
aggregation partitions, we assign processes with ranks 0, 4, 8 and
12, to be the aggregators. While it can be the case that the chosen
aggregator for a partition’s data resides in a different partition,
spatially neighboring processes may not be close in the network
topology, and hence, we choose a scheme which ensures a more
even utilization of the network [27].

3.3 Metadata and Data Exchange

Once the aggregation-grid is in place and aggregators assigned,
the processes initiate the data aggregation phase. However, unlike
grid-based data, for unstructured particle data the aggregators do
not know a-priori how many data packets to expect, nor how big a
buffer to allocate to hold the set of particles they will receive. Simi-
larly, the transmitting processes do not know a-priori the size of
data packets they will send to their assigned aggregator(s). Thus, be-
fore the actual particle data exchange phase, we perform a metadata
exchange where processes send to their aggregator(s) the number of
particles they will be sending during the actual aggregation phase.

For a uniform-resolution simulation, where all processes have
the same size patches, we accelerate this phase by aligning aggre-
gation partitions with the simulation’s domain partitioning. By
aligning our imposed aggregation-grid we ensure that each process
will send all its particles to a single aggregator. In general, if the
aggregation partitions are not aligned with the simulation, each
process must first identify the aggregation partitions it intersects
with and perform a scan through its particles to group them by the
partition they fall into.

After the metadata exchange phase, we perform the actual ex-
change of particles. For aligned aggregation-grids, the domain of
each process is always contained inside a single partition, in which
case each process can simply send all of its particles to the process
which owns the partition. For non-aligned aggregation-grids, each
process instead sends the bundle of particles compiled during the
metadata exchange phase to the respective aggregators for each
partition. We use non-blocking MPI point-to-point communication
for both metadata and data exchange.

3.4 Level of Detail Particle Data Layout

After the particles are collected by their respective aggregators,
they are reorganized to provide a layout suited for multiresolution
access for post-processing analysis and visualization tasks. These
tasks are typically performed on small clusters or workstations,
where smaller memory capacities and slow data access can heavily
affect overall performance. In order to facilitate fast analytics and
visualization-appropriate low-latency reads, we employ a level of
detail reordering of the particles. Level-of-detail (LOD) ordering
provides multiresolution access allowing users to perform analytics
at varying scales. The order of particles used to create the levels
of detail can be defined using different kinds of heuristics such as
density or random. As an example, our format implements reorder-
ing as a random reshuffling. The particles are reordered in-place,
producing a sequence of subsets that represent different levels of
detail. The reordered particles are then written out as one long
sequence where each level follows the previous. When reading
from this data format, applications can read subsequent levels by
simply reading further in the file.

As a result of random shuffling, the data format created is dy-
namic in nature, with the number of particles (x) in every level
(I) depending on the number of processes (n) accessing the data
(during reads). We define each level of detail / (i.e., LOD) as a subset
of at most x(n,l) = n-P- st particles, where n is the number of
processors reading the data, P is the number of particles per read-
ing process contained in the first level, and s is a resolution scale

high, (1,1) high,
L] L]

Box | Agg File Low High
rank name
0 0 File_.O | 0.0,0.0 | 0.5,0.5
low, low, ‘high, | 1 | 4 | File4 | 0500 [10,05
high, 2 8 File_8 0.0,0.5 | 0.5,1.0
. . 3 12 File_12 | 0.5,0.5 | 1.0,1.0
(0,0) low, low,

Figure 4: An example of a spatial metadata file. The columns high-
lighted in grey are written to the file. Agg rank is used to derive the
name of the data file.

factor that can be varied by the user (S defaults to 2). As can be
seen from the formula, the resolution scale S acts as a multiplier
that exponentially increase the number of particles going from one
level to the next. For example, when reading a dataset containing
100 particles on one core (i.e., n = 1) with P = 32 and S = 2, the
first level (level 0) will contain 32 particles (1 - 32 - 2°), the second
(level 1) 64 (1 - 32 - 2') and the third the remaining four particles
(100—64—32). The different LODs are simply subsets of the data, and
as such we do not incur any additional storage overhead compared
to strategies which compute additional representative particles for
the coarser LODs. With this format users can read a file linearly up
to some desired level of detail. The LOD upto which one reads data
can be based on the available memory on the machine, or some
other metric (e.g., screen- space projected area, RMSE).

The computation time for reordering the particles is not a sig-
nificant bottleneck, we find that for 32K particles it requires 33
msec on Mira and 80 msec on Theta. We note that while Theta has
more cores per processor, the single core performance is lower than
Mira’s, and our reordering is not currently parallelized.

3.5 Writing Spatial Metadata

In addition to writing a hierarchy of data files, we also write an addi-
tional metadata file. The metadata file stores a list of bounding boxes
corresponding to the particles stored in the data files. An example
of the metadata file for the particles written in Figure 2 is shown in
Figure 4. Our aggregation scheme ensures that the bounding boxes
of particles in the data files are unique and non-overlapping. The
metadata file holding the bounding box of data files is used when
reading the data for analysis and visualization tasks. We populate
this metadata file on rank 0, using an MPI_Allgather to collect the
bounding boxes of all aggregator-processes. The collected data is
then written to a binary file with the format shown in Figure 4.
We plan to further extend the metadata format by storing, e.g., the
minimum and maximum values of scalar fields of the region as well.
Such metadata can be used to narrow down range-queries on these
non-spatial attributes (e.g., density, pressure or temperature). We
discuss we leverage the metadata file information to facilitate fast
reads in the following section.

4 SCALABLE PARALLEL READS FOR
ANALYSIS AND VISUALIZATION
In this section we present three key factors that work together to

make our parallel reads fast and scalable. In particular, we focus
on reads for analysis and visualization tasks where the number

of processes reading the data is typically much smaller than the
number of processes that were originally used to write.

First, our I/O format generates fewer data files compared to the
traditional file-per-process I/O, thus parallel reads on our format
require opening and accessing fewer files. For example, generating
a dataset at 64K processes with our data format and configuration
of Px X Py X P, = 2 X 2 X 2, produces 8K files, whereas file-per-
process I/O would generate 64K files. Reading the dataset with say
512 processes will have every process open 128 (64K /512) file with
file-per-process I/O as opposed to opening only 16 (8K/512) files
with our I/O scheme.

Second, our format writes data in a spatially coherent manner,
where files are written with spatial knowledge of particles. This
further reduces the number of file accesses when reading back
the data. For example, if the user wants to perform distributed
rendering on four nodes the spatially-aware mapping of the data
in Figure 1 requires only a single file to be read by each process,
while the spatially unaware mapping requires each process to read
two files and perform additional seek operations within those files.

Finally, our spatial metadata file lets processes pick which data
file to read. As mentioned in Section 3.5, along with data files we
also write a metadata file storing the spatial extents (bounding-box)
of the data files. If we consider a generic parallel read operation to
perform an analysis or visualization task, processes typically need
to read particle data from some specific spatial regions (box-query)
of the domain. With our format, any process making such reads
simply uses the bounding box information stored in the metadata
file to select exactly which file to read. Note, reading and parsing
the metadata file is a lightweight I/O task. Reading data from a
format devoid of such metadata will require every process to read
all particles across all the files and then cherry-pick the relevant
particles. As a matter of fact, this solution will produce undesirable
performance.

Furthermore, our format not only allows selective access of files
but it also grants the ability to read the particles within the files at in-
creasing levels of details. Recall from section Section 3.4, we deploy
reordering to create an implicit LOD hierarchy within particles. Ev-
ery file contains particles in a order that identify a sequence of level
of details. A file can be read linearly up to a desired level of detail,
which can be chosen, for example, based on the available memory
on the machine, or some other metric (e.g., screen-space projected
area, RMSE). If more accuracy is desired or more memory is avail-
able, the application can read and append another level of data to
the previously loaded particles to provide progressive refinement.
The layout makes our format especially useful for visualization
applications which leverage progressive refinement to work with
large (potentially remote) datasets. For example, an application can
query a low level of detail to quickly display a representative subset
to the user, and over time in the background, load subsequent levels
to refine the image until some set quality threshold or memory
limit is reached.

5 EVALUATION

In this section we report the performance evaluation of our I/O
system on Mira [25] and Theta [24] supercomputers, using gener-
ated datasets representative of typical particle-based simulations

100

]
Mira, 32K Particles b
g
& 10 4
[=2)
o
=
3
o
£
Y
=]
S
£ -0-1x1x1 ~0-2x2x2
-0-2x2x4 ~-2x4x4
-8-I0R FPP -8-|0R collective
~o-Parallel HDF5
0.1
512 1024 2048 4096 8192 16384 32768 65536 131072 262144
Number of Processes
1000
~0-1x1x1 -@- 1x1x2 -o— 1x2x2 2x2x2
2x2x4 -8 2x4x4 —0— 4x4x4 -8-I0R FPP
-®-I0R collective -®—Parallel HDF5
o
]
»
~
=)
g
=
>
o
ey
an
>
o
2
ofa
-
Theta, 32K particles
1@

512 1024 2048 4096 8192 16384 32768 65536 131072 262144

Number of Processes

100

Mira, 64K Particles z - ~ 4
g
© 10 4
o d
C] - =
5 _-° =
o
=
Y
=]
e 1
£ ~0-1x1x1 ~0-2x2x2
~0-2x2x4 ~0-2x4x4
-8-10R FPP -8-|0R collective
-eo-Parallel HDF5
0.1
512 1024 2048 4096 8192 16384 32768 65536 131072 262144
Number of Processes
1000 ~0-1x1x1 -&- 1x1x2 ~o- 1x2x2 2x2x2
2x2x4 ~@— 2x4x4 -0 4x4x4 ~®-IOR FPP
-®-|0R collective -@—Parallel HDF5
< - - ==
]
< 100
o
Qe
=
>
o
=y
an
3 10
2
-
-
Theta, 64K particles
19

1024 2048 4096 8192 16384 32768 65536 131072 262144
Number of Processes

512

Figure 5: Parallel write weak scaling for different configurations of our spatially aware two-phase I/O strategy on Mira (first row) and Theta
(second row). The ideal choice of aggregation configuration is highly machine and workload dependent, and is left exposed to users as a tuning
parameter. We also report IOR and Parellel HDF5 experiments as reference for file per process and collective I/O performance.

performed using the Uintah computational framework. First, we
demonstrate the scalability of our system in performing parallel
writes in Section 5.2, and discuss how our system can be effectively
tuned for the two platforms. We then demonstrate the efficacy of
our system in performing visualization reads (Section 5.3), and
multiresolution reads (Section 5.4).

5.1 Experimental setup

For all our experiments, we used datasets representative of the
I/O workload of the Uintah simulation Framework [7]. Uintah is a
general purpose software framework, used in the development of
components for numerical modeling of fluid-structure interactions,
computational fluid dynamics, solid mechanics and multi-physics
simulation. Specifically of interest for our work is Uintah’s sup-
port for a range of particle based models, e.g., the material point
method [7] and Lagrangian particle transport [28], providing a
range of datasets representative of common use cases of parti-
cle data. The simulation framework has shown scalability to core
counts approaching 768K. In our experiments we used two work-
loads with 32,768 and 65,536 particles per core. Each particle is
represented by 15 double precision values (i.e., position vector with
3 components, stress tensor with 9 components, density, volume,
ID), and 1 single precision variable (i.e., type). For the two workloads
this configuration corresponds to 4 and 8 MB respectively, data per
core for each timestep. To provide baseline file per process and
collective I/O comparisons for our results we also run IOR [29] and

Parallel HDF5 (i.e., using the h5perf tool) [30] benchmarks to write
data equivalent to the 32K and 64K particle per core configurations.
As we are more interested in the performance a simulation would
see when saving data, our benchmarks are run without fsync, with
the consideration that a simulation would not wait to fsync before
continuing on to the next timestep. Similarly, the IOR benchmarks
are also run without fsync, for both file per process and shared file
I/O. This configuration should yield peak performance for file-per-
process I/O on a Lustre file system. On the Lustre system we use 48
stripes (48 OSTs), with the stripe size set to 8MB, as recommended
by the ALCF guidelines for I/O performance on Theta [31].

We evaluate the efficacy of our approach on two platforms with
different network and filesystem architectures: ALCF’s Mira [25],
an IBM BlueGene/Q using a 5D Torus network topology and GPFS
filesystem [32]; and Theta [24], a Cray machine with Intel Xeon
Phi processors with Dragonfly topology network and Lustre file
system. Finally we also evaluated read performance of a large 2
billion particle dataset on a workstation with 4 Intel Xeon CPUs
with 18 cores each, 3TB of RAM and two SSD drives.

5.2 Parallel Writes

On both Mira and Theta we perform two sets of weak scaling ex-
periments, one for 32K particles per core, and one for 64K particles
per core. On both machines, we varied the number of processes
from 512 to 262,144, thus varying the amount of data generated per
timestep from 2 GB to 1TB (32K particles per core), 4 GB to 2 TB

mFilel/O M Data aggregation ®File|/O m Data aggregation

100% 100%

80% 80%

g 0% 60%
H

£ 40% 40%

20% 20%

0% 0%

Il 2x2x2 2x2x4 2xdxé 1xix1 22x2 2x2x4 2xax4

(a) 32K particles, Mira (b) 64K particles, Mira

m1/0O m Aggregation ® /0O = Aggregation

100% 100%
80% 80%
60% 60%
40% 40%
20% 20%

0% 0%

Ix1x1 1x1x2 1x2x2 2x2x2 2x2x4 2x4x4 4x4x4 Ix1x1 1x1x2 1x2x2 2x2x2 2x2x4 2x4x4 4x4x4

(c) 32K particles, Theta (d) 64K particles, Theta
Figure 6: Time profiles for different aggregation configurations on
Mira (a,b) and Theta (c,d). We observe that on Theta more time is
spent in aggregation (communication) compared to Mira, for the
same configurations. This indicates that fewer partitions, and thus
less communication, should be preferred on Theta.

(64K particles per core). For all our runs we varied Py, Py, Pz, using
configurations (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2), (2, 2, 4), (2,4, 4) and
(4,4, 4). Recall from Section 3.1 Py, Py, Py, controls both the extent
of communication performed during aggregation, and the number
of generated files. Larger values of Py, Py, P, correspond to more
communication and fewer output files. In some preliminary scaling
runs, we observed that Mira performed better with larger Py, Py,
P, compared to Theta, which had better performance at smaller
Py, Py, Py. Based on this observation, we reduced the number of
experiments performed on Mira and did not run experiments for
configurations (1, 1, 2) and (1, 2, 2).

We plot the results of our experiments on Mira in Figure 5 (top
row), along with the IOR (dashed trend lines) and Parallel HDF5
(green trend line) results. We observe that both IOR file per process
and our I/O scheme’s file per process configuration (1, 1, 1), starts
to saturate at very high process counts (at 131,072 processes for
32K particles, and 65,536 processes for 64K particles). At this scale
file per process I/O encounters issues with the network file-system
failing to handle the large number of files efficiently. IOR’s shared
file I/O and PHDF5 also do not scale, as collective I/O starts to
overload the network when gathering data, dramatically decreasing
its performance at scale. We observe that configurations (2, 2, 4)
(purple line) and (2, 4, 4) (red line) of our spatially aware two-phase
I/O scales all the way to 262,144 processes. At 262,144 processes
we obtain a maximum throughput of 98 GB/second while writing
a total of ~ 17 billion particles. This high performance can be
attributed to two factors, a scalable aggregation phase that takes a
small portion of total I/O time, and the generation of fewer, larger
files providing a bigger I/O burst size compared to file-per-process
/0.

The first claim can be verified from Figure 6a and b, which shows
a breakdown of the percentage of time spent aggregating data over
the network and the actual time spent writing files to disk, for the
experiments at 32K cores with 32K and 64K particles per core. As
expected, for both runs we observe an increase in aggregation time
with more aggregation partitions; however this percentage remains
small compared to the actual file I/O time. This demonstrates that
on Mira the time spent in writing files to the storage system is
significantly higher than the time spent collecting the data over the
network.

Our second claim is supported by computing the aggregated
file size for each configuration, using the equation discussed in
Section 3.1. As the aggregation-grid increases, we generate fewer
and larger files, with bigger I/O burst size. For example, with 32K
particles per-process at 4096 process, file per-process 1/O will pro-
duce 4096 files, each 4MB; however, aggregating with a (2, 2, 4) grid
will produce 128 files, each 128MB.

We plot our results for Theta in Figure 5(second row), and find
that Theta exhibits completely different performance characteristics
compared to Mira. Theta’s Lustre filesystem is known to scale well
with file per process I/0, and thus IOR with fsync disabled should
give the filesystem’s peak performance. As expected, we observe
that both IOR’s file-per-process (dashed light blue lines) and our
I/0 scheme’s file-per-process (dark yellow) configuration (1,1, 1)
scales much better than Mira. In fact, file per process reaches peak
performance at most core counts. However, at high core counts
file per process I/O’s performance starts to flatten out, as the file
creation time for the large number of files begins to dominate the
actual I/O time.

While the (1, 2, 2) configuration (purple line) is outperformed
by file per process at lower process counts, it continues to scale
at higher process counts, finally, outperforming file-per-process
1/O at 65,536 processes. Using (1, 2, 2) configuration for 32K and
64K particles per core, we achieve a maximum throughput of 216
GB/second and 243 GB/second at 262,144 processes, respectively.
File-per-process I/O on the other hand yields a throughputs of 83
GB/second and 160 GB/second. Shared file I/O on Theta yields sub-
optimal performance, which can be attributed to a more expensive
aggregation phase.

To determine how the different configurations affect the overall
performance on Theta, and differences between Theta and Mira,
we examine the time breakdown between communication and file
1/O for different configurations (Figure 6). On Theta we observe
that the aggregation of data over the network is far more expensive
than on Mira, and takes a greater percentage of time overall as
the aggregation-partition size (and thus number of communicating
processes) increases. This observation, combined with the Lustre
system on Theta preferring more independent files explains why
we observe file per process I/O performing so well compared to
Mira. In line with this preference for file per process I/O over com-
munication, we find better performance when aggregating among
smaller groups of processes on Theta (i.e., (1,1, 2), (1, 2, 2)). These
results are in contrast to our findings on Mira, where aggregating
among larger groups of processes gives better results. By exposing
the aggregation partition factor as a user tuneable parameter, our
approach can be used effectively on both architectures.

10000 - - 10000
-2 x 2 x 2 (without spatial metadata)

2 x 2 x 2 (with spatial metadata)
+1x1x 1 (with spatial metadata)

-2 x 2 x 2 (without spatial metadata)
-2 x 2 x 2 (with spatial metadata)
+1x1x 1 (with spatial metadata)

SSD Based workstation

B

T 1

64 128 256 512 1024 204 1 2
Number of Processes

Time (seconds)
=
)
S

Time (seconds)
e
)
S

1

4 5 16 3 6
Number of Processes
Figure 7: Visualization style read strong scaling on Theta and a
single workstation, reading a 2 billion particle dataset written on
64K cores. Our approach, using spatial correspondence, provides
good strong scaling and read performance, even at far fewer cores
than the data was written with. On the contrary, reading from file
formats with poor or no spatial correspondence are significantly
slower and their performance decrease at scale.

5.3 Visualization Reads

In contrast to simulations, which perform massive read and write op-
erations, visualization and analysis tasks are less compute bounded,
and instead are often performed on more modest machines and core
counts than the simulation was run on. For example, the output
of a simulation run on Mira or Theta at hundreds of thousands of
cores could then be visualized on ALCF’s visualization clusters like
Cooley, which has just 1512 cores total; or using a smaller job on
Mira or Theta; or even on a user’s workstation.

To evaluate the scalability of our approach we conducted a series
of strong scaling experiment. We generated three datasets of the
same size, using 64K processes with a per-process load of 32K par-
ticles. In the first case the dataset was written with an aggregation
configuration of (2,2,2) and without any spatial metadata file. In
the second case the dataset used was written with the same aggre-
gation configuration of (2,2,2), but with the addition of the spatial
metadata file. Note that in both those cases the dataset contains 8K
files. Finally in the third case, we read a dataset written using a file-
per-process aggregation configuration of (1,1,1) (total of 64K files),
but with the spatial metadata file. We ran our parallel reads on two
different platforms: Theta and a local workstation (configuration in
Section 5.1) equipped with an SSD drive. On Theta we varied the
number of processes from 64 to 2048 and for the workstation we
varied the number of processes from 1 to 64. The results are plotted
in Figure 7.

For both machines, as expected the second case (red line), which
uses spatial metadata and has fewer files, provides the best perfor-
mance and scaling. For the first case (green line), the lack of spatial
information forces every process to read the entire set of particles
(i-e., from 8K files). Therefore, in this case adding more processes
does not reduce the per-process I/O load; as a result it exhibits the
worst performance on both machines. Finally, we observe for the
3rd case (1,1,1 configuration, blue line) reading large number of
files has a stronger impact on Theta as compared to the SSD based
workstation. On the workstation with SSDs the time taken to read
dataset across a large hierarchy of files (i.e., in this case 64K) is
almost comparable to reading from a smaller hierarchy of files (2nd
case, 8K files). For the third case we also observe that, although the
large number of files reduces the overall performance, the spatial
information present in the metadata (and in the format data layout)

-
~
~
@

SSD Workstation

Time (seconds)
o
)
~
S

Time (seconds)

«

o N & o ®

Theta

0
0 2 4 6 8 10 12 14 16 18 20 22
Number of Level of Details (LODs)

0 2 4 6 8 10 12 14 16 18 20 22
Number of Level of Details (LODs)

Figure 8: Level of detail read performance on an SSD Based Worksta-
tion (a) and Theta (b) using 64 cores to read progressively higher lev-
els from a 2 billion particle dataset. Our ordering allows fast reads
for low levels of detail, and does not increase significantly until
reading large portions of the dataset.

(a) 25% (b) 50%
(c) 75% (d) 100%

Figure 9: A zoomed in view of a coal particle injection simulation
dataset, with 55 million particles, written using a random reshuf-
fling for level of detail. From left to right: progressively more parti-
cles are read, from (a) 25% to (d) 100% of the data. Lower resolutions
using this LOD ordering can still provide a good representation of
the data, and be read quickly using our I/O strategy.

still allows this approach to scale well (i.e., time reduces with more
cores).

5.4 Level of Detail Reads

In this section we report the time to read progressively levels of
detail from a 2 billion particle (23!) dataset using 64 cores (n =
64). The dataset was originally written at 64K cores using the 2 x
2 X 2 aggregation configuration (generating 8K = 64K/2 x 2 X 2
files). For our experiments we set P to be 32 and S to be 2, recall
P is the number of particles per reading process contained in the
first level and S is the resolution scaling factor. Working with this
configuration (n = 64, P = 32, S = 2) we can have upto 20 level of
details (i.e., using the formulax =n-p- s! defined in Section 3.4,
where x = 23! particles we find that [= logy[23!/(64 - 32)] = 20).
We measure the time taken to read progressively increasing number
of levels (starting with reading two levels all the way to reading all
20 levels). In Figure 8 we report the results of our experiments on
Theta and an SSD based workstation.

() (b) (©) (d) (e) (®)
Figure 10: (a-c) Examples of non-uniform particle distributions typ-
ically found in simulations. The colored boxes correspond to the
adaptive aggregation-grid which takes into account the spatial dis-
tribution of the particles to load balance I/O and network traffic,
while ignoring regions without particles. (d-e) A non-uniform dis-
tribution of particles (d), written without adaptivity would assign
aggregators to regions without any particles (e). Our spatially adap-
tive aggregation scheme takes into account the particle distribution,
and adapts the aggregation grids correspondingly (f).

On Theta we observe that the first few levels can be read in
about the same time, this is mainly because the total I/O time is
dominated by large number of file opening operations rather than
actual reads (every process opens approximately 8k/64 files). On
the other end, after level of detail 8 we observe a time increase that
is proportional to the number of particles until the last level (i.e.,
20) where the timing is equivalent to reading the entire dataset
using 64 cores (as seen in the Figure 7). On the SSD workstation we
see a slightly different trend. As opposed to Theta, for initial lower
levels we observe time increasing proportionally with the number
of particles being read. This result is in accordance to the trend we
saw in Figure 7, where the workstation with SSDs was showing
very minimal performance deviation with respect of number of
files being read. Overall we note that the time spent to load lower
LOD on the SSD workstation is small enough to enable interactive
analysis and visualization tasks.

Using this ordering, level of detail can be implemented in a
visualization application by loading progressively larger subsets
of the data over time. The lower levels of detail can still provide
an accurate view of the data, and the structure can be preserved
by increasing the particle radius [19]. To evaluate the use of our
LOD framework to perform progressive visualization we produced
some particle rendering at different resolutions. In Figure 9, we
show how when higher levels of detail are loaded, the radius is
decreased to provide a smooth progression from low to high detail
visualization. From those rendering, we can also observe how most
of the features are still visible even using only 25% of the particle
data.

6 PARTICLE DISTRIBUTION AND ADAPTIVE
AGGREGATION

Simulations tend to balance particles evenly across processes; how-
ever, it is common to have a non-uniform distribution of particles
across the spatial domain. In particular, we consider two common
non-uniform distribution of particles: one where some spatial re-
gion of the simulation domain has a lower particle density compared
to others (Figure 10a), and one where some spatial region of the
domain has no particles at all (Figure 10b and c). These scenarios
are especially common in simulations where particles move toward

18 8
~Non adaptive aggregation 16 ©Non adaptive aggregation 7
<Adaptive aggregation 14
P Bgreg ©Adaptive aggregation 6
12 5 5T
0 8 3
o o
- 3§
6 [
4 2
2 1
MIRA THETA
0 [
100 80 60 40 20 [100 80 60 40 20 [

Percentage of space containing particles Percentage of space containing particles

Figure 11: Write time comparison of adaptive aggregation vs. non-
adaptive aggregation for increasingly non-uniform particle distri-
butions. On both Mira and Theta we find our adaptive approach im-
proves performance.

specific regions, or are used to represent physical materials, or are
injected over time.

Layout-agnostic aggregation schemes do not take into account
the spatial distribution of the particles, and as a result, may assign
aggregators for regions that do not have particles at all (Figure 10e),
or assign more aggregators than are needed in regions with a low
density of particles, underutilizing the I/O system and network.
However, our spatially-aware I/O scheme is layout-aware and takes
into consideration the particle density over the simulation domain,
creating an adaptive aggregation-grid to properly load balance the
particle data (Figure 10f). The adaptive grid places aggregators uni-
formly across the entire rank space, and ensures that no aggregator
is assigned to empty simulation domain.

To create the adaptive grid, processes perform an all-to-all ex-
change and send each other their spatial extents, and the number
of particles within their extents. The adaptive grid is built by deter-
mining the subregion of the simulation domain where the particles
reside, based on the exchanged spatial extents and density informa-
tion. The aggregation-grid is then adjusted to partition just those
regions which contain particles, after which the aggregation and I/O
phases are performed as described previously. Processes without
particles do not participate in the subsequent stages at all.

6.1 Adaptive Aggregation Writes

To study how well our adaptive aggregation works to handle un-
even particle distributions, we simulate various levels of uneven
distributions using 4096 cores. We divided the domain into 4096
regions of equal size, within which we generate particles that are
distributed over progressively smaller portions of the domain, rang-
ing from covering the entire domain, to 50%, 25%, down to only
12.5% of the domain. With particles occupying smaller percentage of
the domain, some processes will have a higher density of particles,
while others may have none at all (see Figure 10d). We compare the
performance of our layout-aware adaptive aggregation scheme (Fig-
ure 10f) against a layout agnostic non-adaptive aggregation scheme
(Figure 10e). The results are plotted in Figure 11.

Overall we find that adaptive aggregation (green line) yields
improvement over non-adaptive aggregation (red line). On Mira,
we observe that as the domain occupied by particles decreases from
100% to 50%, I/O time reduces significantly with adaptive aggrega-
tion. The reduction in time with non-adaptive aggregation is not
as significant. On Theta instead, we observe a completely differ-
ent trend, where the I/O time remains constant. This difference in
performance trend can be attributed to the presence of dedicated

I/O nodes on Mira as opposed to shared I/O nodes on Theta. With
adaptive aggregation scheme, the aggregators are uniformly spread
across the rank space, thus evenly utilizing all available I/O nodes.
Also, given that the total number of particles are same across all
configurations and placement of aggregators do not have signifi-
cant impact on Theta, we observe almost constant performance on
Theta (green line). For highly localized domain distributions (12.5%)
our aggregation scheme starts to saturates in performance, unable
to load balance effectively. In the future we plan to explore this
direction of work in more detail.

7 CONCLUSIONS AND FUTURE WORK

General purpose I/O libraries fails to take into account the require-
ments of post-processing analysis and visualization. In this paper,
we introduced an I/O system specifically designed for particles,
which writes data in a format that preserves spatial locality, while
simultaneously supporting spatial read queries at different LOD.
The I/O system is suitable for tasks such as distributed rendering,
stencil operations, topological analysis, etc. as they can take ad-
vantage of spatial locality in the data format. In our experimental
evaluation, we achieve maximum throughput on Theta, and 50% of
the maximum throughput on Mira using only 1/3 of the machine.
These performance results demonstrate that our techniques can
perform scalable, spatially aware two-phase I/O, while providing
performance portability on different machines.

However, our current work is not without limitations. Although
our existing LOD structure is well-suited to multi-resolution spatial
queries, it may not be the best choice for other styles of range or
filter queries used in analysis tasks. Integrating more advanced or
adaptable structures would make for valuable future work. Similarly,
our current adaptive aggregation phase is applicable to only a
subset of uneven distributions found in practice, and extending
it to support a wider range of configurations would be useful, to
support a broader range of simulations. This could be done by
creating an adaptive grid on the fly, which can re-balance the grid
partition size and placement based on the particle distribution.

ACKNOWLEDGEMENTS

This work is supported in part by the Intel Graphics and Visualiza-
tion Institutes of XeLLENCE program, NSF:CGV Award: 1314896,
NSF:IIP Award: 1602127, NSF:ACI Award:1649923, DOE/SciDAC
DESC0007446, CCMSC DE-NA0002375 and NSF:OAC Award: 1842042.
This work used resources of the Argonne Leadership Computing
Facility, which is a U.S. Department of Energy Office of Science
User Facility supported under Contract DE-AC02-06CH11357.

REFERENCES

[1] “HDF5 Home Page,” http://www.hdfgroup.org/HDF5/.

[2] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, “Topology-aware data
movement and staging for I/O acceleration on Blue Gene/P supercomputing
systems,” in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011.

[3] J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham,

A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF: A High-Performance

Scientific I/O Interface,” in SC ’03: Proceedings of the 2003 ACM/IEEE Conference

on Supercomputing, Nov 2003, pp. 39-39.

J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable, Metadata Rich IO

Methods for Portable High Performance I0,” in Parallel & Distributed Processing,

2009. IPDPS 2009. IEEE International Symposium On, 2009.

(4]

[5]

l6

—
_

=
&

=
=

(18]

[20]

[21]

[22

[29]

(31]

(32]

S. Kumar, J. Edwards, P.-T. Bremer, A. Knoll, C. Christensen, V. Vishwanath,
P. Carns, J. A. Schmidt, and V. Pascucci, “Efficient I/O and storage of adaptive-
resolution data,” in SC14: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, 2014.

S. Kumar, V. Vishwanath, P. Carns, B. Summa, G. Scorzelli, V. Pascucci, R. Ross,
J. Chen, H. Kolla, and R. Grout, “PIDX: Efficient parallel I/O for multi-resolution
multi-dimensional scientific datasets,” in Cluster Computing (CLUSTER), 2011
IEEE International Conference on. IEEE, 2011.

M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey, Q. Meng,
J. Schmidt, and C. Wight, “Extending the Uintah Framework through the Petas-
cale Modeling of Detonation in Arrays of High Explosive Devices,” SIAM Journal
on Scientific Computing, 2016.

S. W. Skillman, M. S. Warren, M. J. Turk, R. H. Wechsler, D. E. Holz, and P. M.
Sutter, “Dark Sky Simulations: Early Data Release,” arXiv:1407.2600, 2014.

S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel, P. Fasel,
V. Morozov, G. Zagaris, T. Peterka, and others, “HACC: Simulating sky surveys
on state-of-the-art supercomputing architectures,” New Astronomy, 2016.

S. Byna, M. Chaarawi, Q. Koziol, J. Mainzer, and F. Willmore, “Tuning HDF5
subfiling performance on parallel file systems,” in Cray User Group, 2017.

S. Byna, J. Chou, O. Rubel, H. Karimabadi, W. S. Daughter, V. Roytershteyn, E. W.
Bethel, M. Howison, K.-J. Hsu, K.-W. Lin, and others, “Parallel I/O, analysis, and
visualization of a trillion particle simulation,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2012 International Conference For, 2012.
M. Howison, A. Adelmann, E. W. Bethel, A. Gsell, B. Oswald, and others, “H5hut:
A high-performance I/O library for particle-based simulations,” in Cluster Com-
puting Workshops and Posters, 2010 IEEE International Conference On, 2010.

R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in ROMIO,” in
Seventh Symposium on the Frontiers of Massively Parallel Computation, 1999.

J. M. del Rosario, R. Bordawekar, and A. Choudhary, “Improved parallel I/O via a
two-phase run-time access strategy,” SIGARCH Comput. Archit. News, 1993.

R. Fraedrich, J. Schneider, and R. Westermann, “Exploring the Millennium
Run-Scalable Rendering of Large-Scale Cosmological Datasets,” IEEE Transactions
on Visualization and Computer Graphics, no. 6, 2009.

K. Schatz, C. Muller, M. Krone, J. Schneider, G. Reina, and T. Ertl, “Interactive
Visual Exploration of a Trillion Particles,” in LDAV, 2016.

F. Reichl, M. Treib, and R. Westermann, “Visualization of big SPH simulations
via compressed octree grids,” in IEEE International Conference On Big Data, 2013.
S. Rizzi, M. Hereld, J. Insley, M. E. Papka, T. Uram, and V. Vishwanath, “Large-
Scale Parallel Visualization of Particle-Based Simulations using Point Sprites and
Level-Of-Detail,” 2015.

M. Le Muzic, J. Parulek, A.-K. Stavrum, and 1. Viola, “Illustrative visualization
of molecular reactions using omniscient intelligence and passive agents,” in
Computer Graphics Forum, 2014.

C. Baldwin, G. Abdulla, and T. Critchlow, “Multi-resolution modeling of large
scale scientific simulation data,” in Proceedings of the Twelfth International Con-
ference on Information and Knowledge Management, ser. CIKM *03. ACM, 2003.
V. Pascucci and R. J. Frank, “Global static indexing for real-time exploration of
very large regular grids,” in ACM/IEEE Conference on High Performance Networking
and Computing, 2001.

Y. Tian, S. Klasky, W. Yu, B. Wang, H. Abbasi, N. Podhorszki, and R. Grout,
“Dynam: Dynamic multiresolution data representation for large-scale scientific
analysis,” in Networking, Architecture and Storage (NAS), 2013 IEEE Eighth Inter-
national Conference on. IEEE, 2013.

1. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, and M. E. Papka, “CPU Ray
Tracing Large Particle Data with Balanced P-k-d Trees,” in 2015 IEEE Scientific
Visualization Conference (SciVis), 2015.

ANL. (2019) Theta home page. [Online]. Available: https://www.alcf.anl.gov/theta
(2017) Mira home page. [Online]. Available: https://www.alcf.anl.gov/mira
Sandia National Laboratories, LAMMPS Molecular Dynamics Simulator.”

S. Kumar, D. Hoang, S. Petruzza,]. Edwards, and V. Pascucci, “Reducing network
congestion and synchronization overhead during aggregation of hierarchical
data,” in 2017 IEEE 24th International Conference on High Performance Computing.
T. Saad and J. C. Sutherland, “Wasatch: An architecture-proof multiphysics de-
velopment environment using a domain specific language and graph theory,”
Journal of Computational Science, vol. 17, pp. 639 — 646, 2016, recent Advances in
Parallel Techniques for Scientific Computing.

H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the I/O perfor-
mance of HPC applications using a parameterized synthetic benchmark,” in SC
’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, Nov 2008.
h5perf home page. [Online]. Available: https://support.hdfgroup.org/HDF5/doc/
RM/Tools.html#Tools-Perf

P. Coffman, F. Tessier, P. Malakar, and G. Brown, “Parallel I/O on Theta with Best
Practices,” Talk at ALCF Simulation, Data, and Learning Workshop, 2018.

D. Chen, N. Eisley, P. Heidelberger, S. Kumar, A. Mamidala, F. Petrini, R. Senger,
Y. Sugawara, R. Walkup, B. Steinmacher-Burow, A. Choudhury, Y. Sabharwal,
S. Singhal, and J. J. Parker, “Looking Under the Hood of the IBM Blue Gene/Q
Network,” in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’12, 2012.

http://www.hdfgroup.org/HDF5/
https://www.alcf.anl.gov/theta
https://www.alcf.anl.gov/mira
https://support.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Perf
https://support.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Perf

	Abstract
	1 Introduction
	2 Related Work
	2.1 Parallel HDF5

	3 Spatially Aware Two-Phase I/O
	3.1 Aggregation-Grid Setup
	3.2 Aggregator Selection
	3.3 Metadata and Data Exchange
	3.4 Level of Detail Particle Data Layout
	3.5 Writing Spatial Metadata

	4 Scalable parallel reads for analysis and visualization
	5 Evaluation
	5.1 Experimental setup
	5.2 Parallel Writes
	5.3 Visualization Reads
	5.4 Level of Detail Reads

	6 Particle Distribution and Adaptive Aggregation
	6.1 Adaptive Aggregation Writes

	7 Conclusions and Future Work
	References

