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Efficient and Flexible Hierarchical Data Layouts for a
Unified Encoding of Scalar Field Precision and Resolution
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Fig. 1: We propose a hierarchical data layout that allows for various forms of progressive decoding that modulate improvements in both
precision and resolution. Each progressive decoding traces a monotonic nondecreasing curve in the precision-resolution space from
the origin, 0%, to the full data, 100% (shown in (a)). Using a 900 GB turbulent channel flow field [49] (10240×7680×1536, float64) (b),
we demonstrate three approximations (c,d,e) of progressively increasing quality decoded along the curve in (a). The time to decode the
data and RAM used are shown in the figure; data retrieved values are inclusive of the preceding points along the curve.

Abstract—To address the problem of ever-growing scientific data sizes making data movement a major hindrance to analysis, we
introduce a novel encoding for scalar fields: a unified tree of resolution and precision, specifically constructed so that valid cuts
correspond to sensible approximations of the original field in the precision-resolution space. Furthermore, we introduce a highly
flexible encoding of such trees that forms a parameterized family of data hierarchies. We discuss how different parameter choices
lead to different trade-offs in practice, and show how specific choices result in known data representation schemes such as ZFP [52],
IDX [58], and JPEG2000 [76]. Finally, we provide system-level details and empirical evidence on how such hierarchies facilitate
common approximate queries with minimal data movement and time, using real-world data sets ranging from a few gigabytes to nearly
a terabyte in size. Experiments suggest that our new strategy of combining reductions in resolution and precision is competitive with
state-of-the-art compression techniques with respect to data quality, while being significantly more flexible and orders of magnitude
faster, and requiring significantly reduced resources.

Index Terms—scalar field, large-scale data, data compression, multiresolution, wavelet transform, coarse approximation

1 INTRODUCTION

With the advent of exascale computing and the increased availability
of high-resolution experimental facilities, data can now be produced at
sizes that overwhelm even the most efficient analytics or visualization
algorithms. A common solution is to process large data sets into
lower fidelity approximations for transfer, storage, and/or analysis.
Reducing data fidelity primarily takes two forms: reducing resolution
(i.e., number of data points) and reducing precision (i.e., the number of
bits representing each data value). Generally, both types of techniques
transform the original data into multiple “levels”, such that meaningful
information is disproportionately more concentrated in the first few
levels, leaving subsequent levels with inessential information to be
discarded. For resolution-based techniques, these levels often manifest
in the form of a tree [67], a hierarchical space-filling curve [58], or a
wavelet hierarchy [82]. With precision-based techniques, data samples
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are often decorrelated to form levels of precision, e.g., with energy
concentration transforms [9, 28], followed by quantization to truncate
away lower order precision levels (e.g., least significant bit planes).
Both types of methods can achieve significant reduction. Therefore,
both have seen widespread use.

Working individually with either approach, however, limits the
achievable computational gains by maintaining either all bits for a
few values or a few bits for all values. In this work, we show that both,
previously separated, hierarchies can be combined into a single more
general hierarchy, which we call a precision-resolution tree. Making
both dimensions of possible data reduction available in a single, unified
model lifts our approach out of the 1D reduction spaces (Fig. 2), where
most existing techniques operate, thus ushering in new opportunities for
different mixes of resolution and precision, which have been shown [39]
to benefit different types of analysis tasks.

We therefore aim, foremost, not for pure compression performance,
but for a data layout design that allows the flexibility of arbitrary
incremental retrieval of “chunks” of data, progressively improving
the resolution and/or precision of data. Furthermore, such data chunks
must be retrieved without excessive time overhead (e.g., due to complex
decoding) or data overhead, such as re-reading of data (e.g., due to a
lack of progressivity) and/or reading or decoding of unused data (e.g.,
due to a lack of random access).
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With these goals in mind, we propose a new, highly flexible frame-
work that can be leveraged to design novel, mixed-reduction strategies.
We argue for choices of the framework’s parameters that lean toward
high degrees of progressivity and random access in all three domains
— precision, resolution, and space — while achieving performance
comparable to that of state-of-the-art pure compression techniques.

Contributions. In particular, we make the following contributions.
• We introduce a precision-resolution tree — a model that unifies the

representation of spatial resolution hierarchies with precision-based
data quantization approaches. In this model, adaptive approximations
of data are modeled with the classical notion of a valid cut of the
precision-resolution tree;

• We formalize a complete family of parameters for practical data
layouts that encode such trees in the presence of compression and
other practical considerations;

• We analyze the trade-offs associated with different choices in the
degrees of freedom of this family of layouts and show how one can
reproduce classical encoding schemes or design new ones with the
advantage of being able to compare all within the same framework;

• We provide an empirical study, including system-level considerations,
that allows designing a new encoding scheme for scientific data,
which achieves competitive speed, memory usage, and compression
rates. Our scheme allows decoding the data progressively while
following different precision-resolution trade-off curves decided at
read time, per the needs of the application.

Our proposed precision-resolution tree and family of data hierarchies
are discussed in Section 3 and Section 4. The proposed system that
implements these ideas is discussed in Section 5. We evaluate the
system in Section 6 and show that even with increased complexity
compared to traditional data layouts, appropriate design decisions and
careful parameter choices enable the proposed layout implementation
(available as opensource software [1]) to be both flexible and efficient.

2 RELATED WORK

Different types of data reduction approaches can be represented as fixed
points or curves within the joint precision-resolution space (Fig. 2).
Such techniques can be broadly classified as existing along the resolu-
tion axis, along the precision axis, or mixed.

Resolution-based reduction. Most resolution-based approaches sub-
divide the space to form a tree, where branches denote a spatial sub-
division in one or more dimensions. How the dimensions are treated
(simultaneously [47, 55] or independently [29, 81]) defines the shape
of the tree. At coarse levels, data samples are obtained through some
form of weighted averaging [13, 47, 61]. These trees often duplicate
data for lower resolutions and therefore incur overheads in progressive
data loading. Fine-level nodes can be discarded based on a threshold,
thereby storing only sparse trees [10, 22, 30, 33, 37]. However, such
approaches primarily support visualization and not numerical analyses.

Another group of techniques use data-dependent basis transforms [5–
7, 31, 32, 73, 74], expressing the data as a linear combination of multi-
dimensional basis functions forming levels akin to resolution. Common
image and video compression methods also take this approach using
variants of the discrete cosine transform [14, 71, 79], but with data-
independent bases, thus trading quality for speed during encoding.
These approaches are often limited in reconstructing coarse approxima-
tions, since often their “resolution levels” and the actual data samples
in the original grid have no direct correspondence. Therefore, the
(inverse) transform must be done at full resolution, and only subse-
quently can redundant samples be discarded, which is costly. Some
approaches circumvent this limitation by constructing an octree before
the transform [27, 32, 54]. Still, these approaches provide limited or no
progression in precision.

Another notable approach, the IDX file format [43, 46], supports
fast decoding by rearranging grid samples into a spatially coherent
hierarchical space-filling curve [34, 58]. Because the rearrangement
is efficient, IDX and techniques derived from it have been shown to

Fig. 2: Considering precision and resolution as two axes in the space
of data reductions. (Left) Previous approaches operate either as fixed
points or fixed progression curves in this space. (Middle) Our unified tree
model supports multiple arbitrary progression curves simultaneously with
one data layout, effectively covering the entire space. (Right) Reducing
too much precision causes banding (A). Reducing too much resolution
results in pixelization (B). This work explores how flexible combinations
find better quality at comparable sizes (C).

scale to very large data sets [42, 59, 65, 72]. In this paper, we show that
IDX’s hierarchy [58] is a specific type of wavelet hierarchy, just without
data filtering. Lacking data filtering means IDX does not have an
interpolation basis and the coherency needed for effective compression.

Wavelets [20] are the most common transforms that support fast
multiresolution decoding. Each transform step separates the input sam-
ples into equal halves: (1) low-pass coefficients representing a coarser
grid, and (2) high-pass coefficients containing fine details absent in
the first half. This transform can be recursively applied to produce a
hierarchy of coefficients capturing details at multiple scales. Wavelet
transforms are local and fast, and the coefficients are highly compress-
ible [15, 16, 60, 66, 69, 76], and thus they are used in various data
reduction systems [18, 51, 62, 82]. The multiresolution nature of the
wavelet transform also makes it useful for, e.g., level-of-detail visu-
alizations [35, 36, 40, 56, 64, 68, 77, 80]. Nevertheless, most of these
systems do not take advantage of precision-based reduction, or do so
only as a final lossy compression step with no progression. In contrast,
our unified tree seamlessly consolidates resolution and precision.

Precision-based reduction. The common theme among lossy com-
pression approaches is to predict data values based on some model
and encode the differences between the actual and the predicted val-
ues, which can be discarded/quantized. Here, better compression ra-
tios can be achieved by predicting with more data points and using
complex encoders, but often at the expense of speed. Although most
resolution-based techniques stress progressivity, here the majority of
techniques [3, 5, 26, 41, 53] adopt a single-error, write-once-read-once
approach, where compression and decompression happen only at a pre-
determined quality. This approach requires the user to choose between
reducing too much at write time or decoding too much at read time.

Other approaches [52, 60, 66] provide an additional degree of flexi-
bility: the ability to specify a desired precision during decompression.
Many of these approaches are used in combination with wavelets or
other transforms, encoding the coefficients one bit plane at a time. Pro-
gression in precision is achieved by sorting the bit planes in decreasing
order of significance, thus decoding the bit stream gives a progressive
best effort approximation. For effective compression, however, a bit
plane will often span multiple resolution levels, which complicates
decoding when only a subset of the levels are desired.

Mixed (resolution-precision) reduction. JPEG2000 [76] allows for
the selection of a small set of quality levels (computed at compression
time) that are optimal combinations of resolution and precision in L2
norm. This approach has disadvantages when applied to scientific
data, since the preselected quality levels are quite limited, with little
control over how those are achieved. We instead explore how the
precision-resolution space can be navigated flexibly. JPEG2000 is
also designed for imagery and not scientific data and as such does
not support high-precision data. In addition, it is not concerned with
large out-of-core data and therefore does not optimize for disk I/O.
Overall, its optimization is tailored for visually appealing images and
not necessarily the best for achieving scientific tasks, which, as shown
in Fig. 7, may require using very different kinds of error metrics.

The most relevant approach to the target of this work is VAPOR [19,
51], a data visualization toolkit that uses wavelets for compression and
multiresolution access. VAPOR also exposes a set of predetermined
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(x,y) Z(x,y) P ++ 1 ++ S S ++ 1 ++ P g f h

(0,0) 0000: 0 ++ ++ 0000 0000 ++ ++ 0 0 -
(1,0) 0001: 1 000 ++ 1 ++ ++ 1 ++ 000 4 8 4
(2,0) 0100: 4 0 ++ 1 ++ 00 00 ++ 1 ++ 0 2 2 1
(3,0) 0101: 5 010 ++ 1 ++ ++ 1 ++ 010 4 10 5
(0,1) 0010: 2 00 ++ 1 ++ 0 0 ++ 1 ++ 00 3 4 2
(1,1) 0011: 3 001 ++ 1 ++ ++ 1 ++ 001 4 9 4
(2,1) 0110: 6 01 ++ 1 ++ 0 0 ++ 1 ++ 01 3 5 2
(3,1) 0111: 7 011 ++ 1 ++ ++ 1 ++ 011 4 11 5
(0,2) 1000: 8 ++ 1 ++ 000 000 ++ 1 ++ 1 1 0
(1,2) 1001: 9 100 ++ 1 ++ ++ 1 ++ 100 4 12 6
(2,2) 1100: 12 1 ++ 1 ++ 00 00 ++ 1 ++ 1 2 3 1
(3,2) 1101: 13 110 ++ 1 ++ ++ 1 ++ 110 4 14 7
(0,3) 1010: 10 10 ++ 1 ++ 0 0 ++ 1 ++ 10 3 6 3
(1,3) 1011: 11 101 ++ 1 ++ ++ 1 ++ 101 4 13 6
(2,3) 1110: 14 11 ++ 1 ++ 0 0 ++ 1 ++ 11 3 7 3
(3,3) 1111: 15 111 ++ 1 ++ ++ 1 ++ 111 4 15 7

Fig. 3: Illustration of a resolution tree, Tr, for a 4×4 grid and parameter d = 1, which leads to a branching factor of at most 2. The figure tabulates the
Z-indices and the proposed bit manipulations thereof, leading to the functions f , g, and h, used for constructing the tree. The sequence of grids Gi
shows the nested sub-grids arising from the top-down traversal of the tree. The nodes of the tree and the corresponding grid points are labeled by
their indices (the output of f ) and colored based on their levels (the output of g).

quality levels at compression time. At read time, VAPOR can selectively
fetch wavelet coefficients as the user increases the quality level and/or
resolution level, reducing I/O and computation overheads. However,
the quality levels correspond to the number of wavelet coefficients to
decode and are not a direct control over data precision. This, together
with the fact that only a few quality levels are supported (by default 4),
means that the control over data quality is quite limited.

3 UNIFIED PRECISION-RESOLUTION DATA MODEL

Given a scalar field defined on a regular grid, our goal is to build a
hierarchy that captures both resolution and precision. For resolution,
a traditional approach is that of kd-trees, quadtrees, or octrees. The
hierarchy we propose differs from such trees primarily in that it has
the same number of nodes as the number of grid points, and that
approximations to the original field can be modeled using the well-
established concept of a cut [17, 25] (Section 3.3). In particular, with a
kd-tree, obtaining an approximation to the original field corresponds
to cutting the tree and discarding all internal nodes, whereas with our
hierarchy, all nodes above the cut define the approximation.

We first establish a set of rules that define such a resolution tree, Tr.
Although Tr does not model precision yet, it is an important starting
point for our unified precision-resolution tree, denoted as T p

r . We will
show that known hierarchies, such as the hierarchical-Z space-filling
curve [58] and multiresolution wavelet hierarchies [63], are specific
instances of Tr. Tr may be defined in many ways. Here, we propose a
family of trees that can be characterized by a positive integer d, which
controls the tree’s branching factor. In particular, we require the root
of Tr to have 2d −1 children and every other internal node to have at
most 2d children. We first describe the construction of Tr with d = 1
(Section 3.1) before generalizing to d > 1 (Section 3.2). Hereafter, we
refer to a data value stored at a specific grid point as sample, and as
grid point when the value is not relevant.

3.1 Formulation of Resolution Tree for d = 1

To construct the resolution tree, we need to construct a map that takes
a grid point to a node in the tree; this map consists of two functions.
Without loss of generality, we describe these two functions — f and
h (and an auxiliary one, g, to aid the derivation of f ) — for a 2D grid,
and illustrate them in Fig. 3.

The index function, f (x,y)→ i, maps the spatial coordinates (x,y) of
a grid point to an integer i≥ 0 that represents the breadth-first traversal
order of the corresponding node in Tr.

The parent function, h(i)→ j, maps the index, i, of a non-root node in
Tr to that of its parent, j ( j < i). With d = 1, each non-leaf node except
the root has two children, so the parent function is simply h(i) = bi/2c.
The level function, g(x,y)→ l, which maps the spatial coordinates of
a grid point to an integer l ≥ 0 — the level of the corresponding tree
node, with the convention that the root is at level 0.

To understand g, consider traversing the tree in breadth-first order
one level at a time (see Fig. 3). The set of nodes visited through level l

constitutes a subgrid Gl = { f−1(0), . . . , f−1(2l−1)} (the set of points
with indices 0, . . . ,2l −1). By design, Gl−1 ⊂ Gl and GL−1 = G, with
L being the total number of levels, i.e., the complete grid is traversed
by the end. Going from G3 to G4 in the shown example, 23 grid points
at level 4 and with odd x coordinate are introduced, whereas going
from G2 to G3, 22 grid points at level 3 and with odd y coordinate are
introduced. This alternating pattern continues and can be formalized
using the notion of the Z index formed by interleaving the bits of
the two coordinates (known as the Morton code [78]). Assuming
the interleaving pattern yxyx . . .yx, Z indices that end with the bit 1
correspond to grid points with an odd x-coordinate, or g(xodd ,y)= L−1
(L= 5 in this example). Similarly Z indices that end with bits 10 belong
to level L−2, or g(xeven,yodd) = L−2. In general, Z indices that have
a trailing bit pattern of 10...0 (one followed by m zeros) belong to
level g(x,y) = L−1−m.

Formally, we partition the n bits of Z into a prefix-1-suffix sequence,
Z =P ++ 1 ++ S, where ++ is bit concatenation, the suffix S = 0...0
starts after the rightmost bit 1 in Z, and m is the number of bits in S. If
Z has no ones, Z =S, P is empty, and m = n.

Prop. 1. A grid point (x,y) with Z(x,y) = P ++ 1 ++ S belongs to level
l = g(x,y)= L−1−m of Tr. The nested grid sequence G0⊂ ·· · ⊂GL−1
has L = n+1 levels.

Let (xi,yi) be the grid coordinates of a node i and (x j,y j) those
of its parent j. Since h(i) = b f (xi,yi)/2c = f (x j,y j), in general the
binary expansion of f (x j,y j) has one more leading zero bit than that
of f (xi,yi). Further, since g(xi,yi) = g(x j,y j)+ 1, the binary expan-
sion of Z(x j,y j) in general has one more trailing zero bit than that of
Z(xi,yi). Therefore, f can be obtained by swapping the prefix (P) and
the trailing zeros (S) portions of Z = P ++ 1 ++ S around the middle 1
bit. Effectively, the level-indicating bits (S) are brought to the front, so
that lower resolution grid points are traversed first in Tr.

Prop. 2. The index of a grid point (x,y), with Z(x,y) = P ++ 1 ++ S is
f (x,y) = i = S ++ 1 ++ P, and that of its parent is h(i) = bi/2c.

Exact calculations of f ,g, and h for all the 16 grid points of a 4×4
grid, as well as the resulting Tr, are included in Fig. 3.

3.2 Generalized Formulation of Resolution Tree for d > 1

Bijective maps for tree construction. In general, a generic framework
for a such resolution hierarchy, Tr, satisfies the following properties.
• There is a bijective map, Md , from the set of points of a grid G to the

set of nodes in Tr. Md consists of an index function fd(x,y)→ i and
a parent function hd(i)→ j. The root node of Tr has 2d−1 children,
and every other non-leaf node has at most 2d children.

• Each node in Tr is associated with a data value that represents some
approximation of the data. This data value may or may not be the
same as the corresponding sample.

• The root node of Tr (at level 0) represents an approximation of the
entire field as a grid, G0, corresponding to a single value, whereas a
fully refined tree represents G exactly. Traversing Tr top-down from
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(b) Resolution tree (c) Precision-resolution tree with 3 invalid cuts (d) Precision-resolution tree with a valid cut

Fig. 4: The input is a 4×4 grid (a) from which we construct a Tr (b) using d = 2. Then, we extend Tr to form T p
r (c) by adding nodes representing bit

planes (the blank nodes) together with necessary edges (in red). The shaded regions correspond to three invalid cuts in (c) and one valid cut in (d).
The three cuts in (c) are invalid since each shaded region intersects at least one path from the root to a leaf more than once.

the root, the inverse map, M−1
d , can be invoked on the nodes visited

at each subsequent level l, yielding a nested sequence G0 ⊂G1 · · · ⊂
GL−2 ⊂ GL−1 = G of L grids, each providing an increasingly finer
approximation of the field represented by G.

The functions f ,g, and h defined in Section 3.1 are hereafter referred to
as f1,g1, and h1, and can be generalized to fd ,gd , and hd for any posi-
tive integer d. Although d can be used purely to control the branching
factor of Tr regardless of the dimensionality (the same way a kd-tree,
d = 1, branching factor 2 can be built on a 3D grid), letting d equal the
dimensionality of the data can be more intuitive and natural since doing
so leads to common types of wavelet subband decompositions.

Recall that g1 was defined by counting the number of trailing zero
bits in Z. To generalize, we instead count the number of groups of
d trailing zero-bits (left-padding Z with 0s if necessary) and denote
that number as md . Then, gd(x,y) = L− 1−md = dn/de−md with
L = dn/de+ 1 being the total number of levels in the tree and n the
total number of bits in Z. Note that when d equals the dimensionality
of the data, n is a multiple of d. To generalize the formulation of fd ,
we partition Z into Z = P ++ F ++ S, where S is the longest sequence
of d×md trailing zero bits in Z, F is the next sequence of d bits, and P
is the remaining prefix of Z. If Z has no ones, Z =S and both P and F
are empty, and md = dn/de.
Prop. 3. A grid point (x,y) with Z(x,y) = P++ F++ S belongs to level
l = gd(x,y) = L−1−md of Tr. The nested grid sequence G0 ⊂ ·· · ⊂
GL−1 has L = dn/de+1 levels.
Prop. 4. The index of a grid point (x,y) with Z(x,y) = P ++ F ++ S is
fd(x,y) = i = S ++ F ++ P, and that of its parent is hd(i) =

⌊
i/2d⌋.

For example, consider the tree with d = 2 for a 4×4 grid in Fig. 4a.
We have Z(2,2) = 1100. Here, P is empty, F = 11, and S = 00. Further-
more, m2 = 1 and therefore g2(2,2) = 4/2−1 = 1. Swapping P and S
around F, we obtain f2(2,2) = 0011 = 3. The parent of this node has
the index h2(3) =

⌊
3/22⌋= 0.

If the input grid G is in 3D, with M1, each subgrid Gi grows twice
as large on the next level (i.e., |Gi+1| = 2|Gi|), but only in one di-
mension at a time, similarly to a kd-tree. With M2 instead, each Gi
grows in two dimensions at a time similarly to a quadtree and, therefore,
Gi+1 = 4|Gi|. With M3, Gi grows by 8 times like an octree, with expan-
sion happening in all three dimensions with each increasing level. Note
that M1 describes exactly the hierarchical-Z space-filling curve [58]
(here, we provide an alternative formulation), whereas M2 and M3, re-
spectively, describe the primal subdivision approach introduced by [50],
as well as the most standard type of multiresolution 2D and 3D wavelet
subband decompositions [70]. Thus, hierarchical-Z indexing can be
considered a form of wavelet decomposition but without actual data
filtering (also known as the lazy wavelet transform). Such concepts are
unified in a formal framework in this study.

Subbands. In wavelet terms, a subband contains a subset of wavelet co-
efficients on the same level, with each subset spanning the entire spatial
domain. In 1D, each wavelet transform step creates two subbands: one
containing low-pass filtered samples (L) and the other high-pass filtered
ones (H). In higher dimensions, more subbands may be created (four
in 2D and eight in 3D). In our construction, the subband number is the
rightmost group of d-bits that are not all zeros in the interleaved index
Z. Since there are d bits in the group, there will be 2d − 1 subbands
on the corresponding level (excluding bit pattern 0...0, because this
belongs to another level by definition).

Combinations of maps. Finally, we note that generalized resolution
trees can be built by combining different maps. We may start with M1,
but for the next level switch to M2, followed by M3, and so on. The bit
interleaving pattern used for Z can also be arbitrary, with Morton code
being a straightforward one, but by no means the only choice. One
potential use case is when the input grid size is highly non-uniform, e.g.,
32×32×512, in which case, we may pick such interleaving patterns as
zzzzzyxzyxzyxzyxzyx and apply four levels of M1 (on the zzzz part) fol-
lowed by five levels of M3 (on the zyxzyxzyxzyxzyx part). Note that for
non-power-of-two-dimension grids, we may insert “virtual” grid points
so that the dimensions become powers of two, construct Tr, and then
discard the virtual nodes. The previous example also serves to highlight
the fact that in addition to d, the Md maps are also parameterized by
the bit interleaving pattern used to form Z. Furthermore, when data
filtering such as the wavelet transform is used, a mismatch between d
and the dimensionality of the data can lead to a Tr in which parent-child
relationships between nodes do not reflect the correlations between
corresponding coefficients. For example, if a 2D wavelet transform is
performed such that the resulting subbands are those that are formed
with f1, a tree built from a map that combines f1 and h2 may work
better than one built from M1 = ( f1,h1) because the former group
wavelets with the same orientation at different scales.

3.3 Precision-Resolution Tree
By definition, a Tr can be traversed only in the order of resolution (the
vertical axis in Fig. 2), as the corresponding nodes store data values at
full precision. We next focus on incorporating precision to Tr to form a
precision-resolution tree, T p

r . To achieve progression in precision, we
first define the concept of a bit plane: assuming all sample values {Vk}
are P-bit integers, a bit plane, Bi (0 ≤ i < P) is the set of bits (of the
samples or transform coefficients) that share the same bit position, i.
With this definition, we split each of Tr’s nodes into a sequence nodes
in T p

r and connect the sequence through a chain, such that each node
in the sequence now encodes a bit of the original node in Tr. Such a
chain connects the bits of a value from the MSB (most significant bit)
to the LSB (least significant bit). To finish the construction of T p

r , we
bring over all the edges of Tr , using the MSB node of each sequence as
a proxy to the original node in Tr.

If the sample values are floating-point numbers, we express all values
in the form Vk = 2E Qk with a single exponent E and then consider the
quantized integer values Qk. We adopt the convention that B0 is the
least significant bit plane, and define a precision level, Bp, to be the set
of all bit planes {Bi}, such that i≥ P− p with P being the total number
of bit planes. Likewise, a resolution level Ll is the set of all grid points
whose corresponding nodes in T p

r belong to levels that are at most l.

Approximations using valid cuts. Approximations to a scalar field in
both precision and resolution can be defined using the classical notion
of a valid cut [17, 25] of T p

r (Fig. 4). Given a T p
r and a subset C of its

nodes that contains the root, a cut is defined as the set of edges leaving
C. The cut is a valid cut if it does not contain two edges on the same
path from the root of T p

r to any leaf. If C corresponds to a valid cut,
then C defines an approximation of the data in precision and resolution.
In our construction of T p

r , obtaining a C corresponding to a valid cut is
equivalent to obtaining an approximation by always retrieving coarse-
resolution and higher order bits first. Doing so is desirable because
coarse-resolution bits tend to contain more function energy and higher
order bits have bigger impact on error. Finally, maintaining a valid cut
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(a) R = 3842×256,
ε = 0, 288 MB

(b) R = 1922×128,
ε = 1/4, 195 KB

(c) R = 1922×128,
ε = 1/32, 357 KB

(d) R = 1922×128,
ε = 1/128, 563 KB

(e) R = 962×64,
ε = 1/128, 199 KB

(f) R = 3842×256,
ε = 1/16, 1024 KB

Fig. 5: Isocontours extracted at different resolution (R) and precision levels (expressed as ε for absolute error) using our system. It is interesting to
see that better surface quality can be obtained with less data at a lower resolution but higher precision level ((d) vs. (f)). The opposite can also be
seen, where higher resolution but lower precision (c) results in better surface quality (than (e)). This example demonstrates both the versatility of our
system (all approximations are obtained from the same data layout on disk), and the need for fine control in precision and resolution.

in memory is simpler compared to maintaining an arbitrary cut, since
the former requires only one “marker” on each path from the root to a
leaf, whereas the latter requires specifying any subset of the edges.

4 PARAMETERIZED FAMILY OF DATA HIERARCHIES

In this section, we introduce abstractions for data transformation and
organization techniques often found in practice, to compute and store a
T p

r (with associated node values) on disk so that answering common
data queries incurs minimal time, storage, and data transfer costs. We
define four common types of queries: (1) Qprec queries that request
data at coarse resolution but high precision, (2) Qres queries that request
data at low precision but high resolution, (3) Qmixed queries that request
at some balanced combination of precision and resolution, and (4) Qroi
queries that request data at very high resolution and precision, but
only for a subset of the whole grid (the region of interest, or ROI). In
Fig. 5 we visually compare several approximations to the original field,
produced by such a set of queries.

To design a data model that can serve such queries efficiently, we
introduce the concepts of bricks, blocks, chunks, and files. Bricks and
blocks provide logical grouping of nodes in T p

r to facilitate Qroi queries
whereas chunks and files control the storage of tree nodes on disk to
facilitate Qprec, Qres as well as fast I/O. In addition to the previously de-
scribed bit interleaving pattern and map (Section 3), additional choices
can be made for the sizes of bricks, blocks, chunks, and files, ultimately
describing a family of physical hierarchies characterized by a set of
parameters. Finally, we introduce two more parameters — the data
transformation/filtering method (e.g., wavelet transform) and the encod-
ing/compression scheme (e.g., ZFP), noting that the identity transform
and verbatim/literal encoding are valid choices. The rest of the section
discusses these parameters in detail.

4.1 Bricks as Units of Random Access

A frequent type of query in visualization and analysis is to retrieve
a region of interest (ROI) in space, which corresponds to retrieving
the corrresponding nodes in T p

r . The most straightforward way to
support this capability, in the presence of (potentially variable-rate)
compression (which precludes implicit on-disk indexing), is to maintain
pointers to the locations of all the nodes on disk. Although such a
solution is very costly, this cost may be amortized by storing one pointer
for every brick of nodes (or samples) instead. On each level, a brick
is a set of Bx×By×Bz contiguous samples in space. Partitioning the
domain into bricks can be done either before or after the construction of
T p

r (and any data transformation). In both cases, such partitioning not
only helps with Qroi queries but also can speed up the construction of
T p

r , since smaller grids are better suited for caching and parallelization.
If partitioning is done after data transformation, there can be data

dependencies among neighboring bricks, which complicates data re-
construction. For example, if wavelet transform is used, the support of
each wavelet basis function may span across brick boundaries, requiring
neighboring bricks to recover samples within a brick, thus negatively
affecting I/O and decoding time. On the other hand, forming bricks
before constructing local hierarchies avoids such issues while further
facilitating parallelization during T p

r construction [44], as bricks are
now completely independent. The downsides of this brick-first ap-
proach are that a forest of (shallow) local hierarchies is created instead
of a single global hierarchy, and the transform coefficients at the brick
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Fig. 6: A global tree can be constructed by merging local trees built
independently from each brick. Local trees can be built using different
maps (here M1 is used for one brick and M2 is used for the other three).
The merging is done by generating a tree that spans all the local roots
({0,1,2,3}), while keeping the local edges intact.

boundary may be artificially large, resulting in blocky artifacts during
reconstruction (we present a solution for the latter in Section 5).

The problem of shallow local trees may be solved by merging the
local trees fully (into a single tree) or partially (into a forest) to reach
any desired number of hierarchy levels. We introduce parameters
Lglobal ≥ 1 and Llocal ≥ 1 to control the number of levels for the global
and local hierarchies, respectively. Note that Llocal can be smaller than
the maximum number of levels possible, given a brick size. Merging
of local trees is done by generating a tree that spans all local roots,
while keeping the local edges intact (Fig. 6). The merged tree T̃ p

r can
be considered an approximation to the T p

r that would have resulted
from a non-bricking approach. Evidently, these are different trees,
which may produce approximations corresponding to subtrees with
different number of nodes for two identical queries. As such, one may
expect T̃ p

r to produce approximations with either significantly fewer
or significantly more nodes compared to T p

r , depending on the size
of the query’s ROI, However, having computed the exact number of
nodes in several approximations for both trees, across a wide range of
brick and ROI sizes, we observe that this number closely tracks the
ROI size regardless of tree types, and the difference quickly becomes
negligible as the ROI grows. This observation suggests that T̃ p

r and T p
r

are functionally very similar.

4.2 Per-Brick Data Transformation or Filtering
Recall that each node in a Tr is associated with a data value, which is a
transform coefficient computed from the original grid’s sample values.
In our model, the type of transform is a parameter orthogonal to the map
used to construct the hierarchy. Typical types of transform include the
many kinds of filters (wavelets, KLT, DCT, etc.) as well as the identity
transform (in which case the resulting hierarchy is subsampling-based).
A transform using the max operator is also useful in certain cases. Note
that to inverse transform a max hierarchy, one needs to encode, for each
parent node, which sibling is the largest among its children using d
additional bits, assuming the Md map. When the task is to detect the
presence of isocontour components, as shown in Fig. 7 for example,
averaging filters such as wavelets may not be ideal since they can lead
to both false positives and negatives, forcing exploration of the full
resolution data to guarantee no missing information. In such cases, a
max hierarchy can yield coarse approximations with false positives but
no false negatives, and therefore entire empty regions can be skipped
since no new features can be created by refining those regions.

4.3 Blocks as Units of Compression
In practice, the transform coefficients in each brick are often partitioned
into blocks and compressed as blocks. The ways blocks are formed
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Fig. 7: A demonstration of the need for flexibility in the filtering operator.
(b) the max-based approximation in green better preserves the features
(blue) than (c) the wavelet-based approximation in red. The max oper-
ator tends to grow the components and potentially merge neighboring
components whereas wavelets tend to average away components.

can be broadly categorized into grouping grid samples versus group-
ing nodes in the corresponding tree (e.g., Tr). For example, ZFP [52]
uses grid-based blocking, whereas JPEG2000 [76] and SPIHT [66] use
tree-based blocking, in breadth-first and depth-first orders, respectively.
Note that we can model this blocking behavior directly in T p

r by letting
each node represent a bit plane from not a single but a group of samples.
A brick is then a collection of contiguous blocks. The blocking method
may affect the size of the resulting subtrees corresponding to approx-
imations produced for certain query types. As an example, for Qprec
queries, depth-first (by resolution) and grid-domain (by space) blocking
are not desirable since they tend to conflate samples across resolution
levels. In our model, the blocking method, block size, and the compres-
sion or encoding method for each block are configurable parameters.
Examples of encoding methods include ZFP, EBCOT, SPIHT, SPECK,
etc. Verbatim encoding (i.e., no compression) is also a valid choice.

It is possible to use different encoding schemes for different blocks,
which would typically require keeping a certain amount of metadata
to indicate the scheme for each block. However, it is reasonable to
expect that, in practice, the total number of schemes would be small.
Thus, the cost of storing this metadata would be quite minimal and well
amortized over the size of a brick (e.g, 643 coefficients) or a block (e.g.,
43 coefficients). Nevertheless, our proposed implementation (Section 5)
does not utilize this option, thus incurring no such metadata overhead.

4.4 Chunks as Units of Disk I/O
Next, we discuss how to store T p

r on disk to facilitate efficient queries.
In practice, disk I/O usually happens in big chunks of bytes, which
we model using the concept of a chunk, our smallest unit of I/O. A
chunk can be defined to have either a fixed size in bytes or a fixed
extent in some space. Storage of chunks into files also has implications
for performance. A large file can slow down chunk lookup (as there
are too many chunks) and reduces parallelism during file I/O due to
potential data races caused by multiple threads writing to the same
file, especially in a distributed setting [45]. On the other hand, having
too many small files puts pressure on the file system and increases
the amount of metadata fetched at read time. In our framework, two
parameters control these trade-offs: the number of chunks in a file and
the ordering of chunks. An optimized chunk ordering can minimize disk
seek latency and take advantage of the operating system’s prefetching.

Finally, it is important to consider indexing for random access of
levels and bit planes, as well as of blocks, bricks, chunks, and files. If
few chunks are included in a file, a simple array of IDs and file offsets
would suffice for random access of chunks. When the number of chunks
per file is large, however, a B-tree [8] could perform better. Likewise,
whether a file can be quickly accessed depends on the number of files
per directory, which, if too large, is a bottleneck during file lookup. All
such choices are parameters to our data model.

4.5 Parameter Choices
In summary, we have proposed a family of hierarchical data models
with various free parameters. Certain parameter choices lead to known
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Fig. 8: Visualization of chunks in the precision-resolution space. The
hierarchy shown here has three levels, seven subbands, and three bit
planes. Each combination of subband and bit plane contains a number of
chunks, shown as squares and colored by subband (light brown squares
are extrapolated chunks). Each node of the tree represents an entire
subband instead of individual coefficients/blocks. The shaded regions
represent a cut in the tree and the corresponding subset of chunks.

data representations in the literature. For example, IDX [58] uses one
brick the size of the entire grid and builds one tree using M1 with no
data filtering. ZFP [52] builds no tree (0 levels), uses grid-based block-
ing, and encodes each block using the ZFP encoder. JPEG2000 [76]
uses the term tiles to refer to our bricks, filters data with wavelets,
uses depth-first blocking and refers to each block as a code block, and
encodes each block using its own EBCOT encoder. Finally, the recently
proposed system in [54] also defines blocks, bricks, and pages, with
semantics that map very well to our blocks, bricks, and chunks. Cer-
tain combinations can be intriguing, such as encoding IDX’s individual
resolution levels using ZFP, or using the ZFP encoder as a lightweight
replacement to EBCOT to encode wavelet coefficients.

5 SYSTEM DESCRIPTION

We present a system that implements a member of our family of data
layouts with concrete parameter choices and techniques to handle real-
world data. As mentioned earlier, most reduction techniques support
only one way to refine data, i.e., as a progression in either precision or
resolution. Nevertheless, it is unclear whether such individual schemes
can be combined sensibly into a 1D progression navigating the 2D
precision-resolution space. In comparison, our approach does not
impose any progression order on data chunks themselves, except for
when valid cuts are concerned. Rather, we advocate for a database-
inspired approach at system level, such that the data layout is designed
to best serve chunks from the 3D precision-resolution-sample space in
any order demanded by the analysis task at hand. Fig. 8 translates the
understanding of cuts onto the 2D precision-resolution-sample space in
terms of chunks of data.

System parameters. Hereafter, we describe the system for 3D data
and use bricks of size Bx×By×Bz samples, where Bx,y,z = 2kx,y,z for
kx,y,z ≥ 0. If any of Bx,y,z equals 1, each brick belongs to a slice,
allowing easy encoding of slice-based volumetric data (e.g., medical
scans). We use the map M3 and let Llocal = 2, while leaving Lglobal
up to the user to control the hierarchy’s depth. We use a breadth-first
blocking approach limited to each wavelet subband to group coefficients
into blocks of size 43 and encode each block with ZFP.

For chunking, we do not fix the chunk size in bytes, but let each
chunk span the same number of samples in space (we settle on the
value of 5123 through the experiments discussed in Section 6). To
form chunks, we partition the 3D space of precision, resolution, and
spatial domain into tiles of size TB (bit planes) ×TS (subbands) ×TG
(grid points), and assign compressed bits from the same tile to one
chunk (note that this is possible in our particular compression scheme,
provided that TG is a multiple of the block size). Thus, a tile can be
considered the “extent” of a chunk in the aforementioned 3D space. A
small TG can result in chunks too small for optimal I/O. On the other
hand, a large TG creates spatial couplings that can penalize small Qroi
queries; likewise, large TB and TS can negatively affect Qres and/or
Qprec queries. We let TB = TS = 1, and choose TG such that TG = 2k

and TG ≥ Bx,By,Bz. For efficient I/O, we do not write data to disk as
soon as a brick is compressed, but buffer the compressed bits using one
bit stream for each combination of subband and bit plane, and flush the
bits only for each chunk. Equivalent bit planes across blocks (taking
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Transform

Level 𝑙 bricks Level 𝑙 bricks Level 𝑙 − 1 brick Level 𝑙 − 1 brick

Move Transform Move

Fig. 9: At each level, we transform the samples in each brick to form local
trees, and then move every 2d root nodes (in yellow) of such trees into a
parent brick, before repeating the process for the next coarser level.

into account the block exponents) are written to the same stream.
Finally, we use the CDF 5/3 multilinear wavelets [20] for filtering,

due to their simplicity and effectiveness in compression, and use the
lifting approach [24] to compute the wavelet transform: f̂2i+1 = f2i+1−
1
2 ( f2i + f2i+2) (w-lift) and f̂2i = f2i +

1
4
(

f̂2i−1 + f̂2i+1
)

(s-lift) where
fi denotes the input sample value at index i and f̂ the wavelet (odd-
indexed) and scaling (even-indexed) coefficients. Below, we highlight
important features of the proposed system and how we achieve them.

Encoding bricks independently. Encoding bricks independently of
each other is key to handling out-of-core data sets, because the data
can be processed one brick at a time during compression and recon-
structed at brick level during decompression. Our hierarchy of Lglobal
levels is built from the bottom up, with data transformation on each
level performed in two steps. First, we perform the wavelet transform
independently for each brick using Llocal = 2, which corresponds to
one transform pass in each dimension. Then, we move the coefficients
in the coarsest subband into corresponding “parent” bricks of the next
(coarser) level (typically each brick on level l is the parent to 23 bricks
on level l +1 in 3D). When the coarser level bricks are fully formed,
we again apply the same two transformation steps on those bricks. The
recursion stops when the desired height for the global tree(s), Lglobal,
is reached. This procedure is illustrated in Fig. 9.

Once the coefficients in the coarsest subband in a level-l brick are
moved to its parent brick on level l−1, the rest of the coefficients in
the level-l brick are encoded and then discarded. We want to move data
as soon as possible (to avoid buffering too many bricks in memory),
which can be achieved by a depth-first traversal of the set of bricks
on all levels. We therefore visit bricks following a Z index created by
interleaving the bits of each sample’s spatial coordinates. Each Z index
consists of a suffix (of length log2 (BxByBz) bits) that corresponds to a
local coefficient index within the brick, and a prefix (the rest of the bits)
to indicate the index of the brick itself. The interleaving pattern for Z
is determined by first fixing a pattern for the suffix, and then repeating
it as many time as possible for the rest of Z. Intuitively, bricks at level
l−1 are formed by treating each level-l brick as a single sample. This
strategy ensures a 2D brick stays on the same 2D slice in the next
coarser level, for example.

Achieving smooth brick boundary. With our choice of wavelets
(CDF 5/3), there is also a data dependency between neighboring bricks,
which, if not handled, may lead to discontinuity artifacts at reconstruc-
tion time. To largely reduce this discontinuity, we use lifting-based
linear extrapolation [12] to extrapolate each brick with one extra sam-
ple in each dimension. We could have used halo exchange to exchange
the boundary values among neighboring bricks; however, we have
chosen to extrapolate so that the bricks can be encoded (and decoded)
independently of one another. In particular, the w-lift step extrapolates
the even-length array [· · ·a,b] to [· · ·a,b,2b−a] so that the last wavelet
coefficient (in place of b) becomes zero. Unlike a simple linear ex-
trapolation, which is done only once for the finest level, our approach
intersperses the linear extrapolation steps with the lifting steps across
hierarchy levels and across spatial dimensions. Such an extrapolation
ensures zero-valued wavelet coefficients in all dimensions at the bound-
ary during the forward transform, resulting in good compression. To
support perfect reconstruction, however, we pay the extra cost of stor-
ing the (compressed) extrapolated samples, also in chunks (assuming
a brick size of 643, the uncompressed extrapolated samples account
for 5% of the data). Fig. 15 demonstrates that this extrapolation is
key to avoiding blocking artifacts. Note that the same technique can
also extrapolate bricks with dimensions less than Bx×By×Bz (those at
the domain boundary) to (Bx +1)× (By +1)× (Bz +1), provided that

x y x y x y x y x y x y x y
1 0 0 1 0 0 0 1 1 1 0 0 1 0

Chunk
File

Dir level 1
Dir level 2

Chunk File Dir level 1 Dir level 2

Full grid

Full grid

Fig. 10: Portions of the interleaved brick index are assigned to chunks,
files, and directories. In this toy example, spatially, every 27 bricks form a
chunk, every 22 chunks form a file, every 22 files form one directory, etc.
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Fig. 11: File and chunk organization for compressed bit plane data (left),
and for exponent data (right). Top is how chunks are stored in a file, and
bottom is how a chunk is organized internally.

Bx,y,z are powers of two, which they are in our system.

Achieving tight error bounds. Given an (absolute) error tolerance,
we encode only enough bit planes to conservatively ensure the recon-
struction error is within the tolerance. Beside ZFP’s transform and
quantization, the wavelet transform introduces additional range expan-
sion that influences error and needs to be compensated for. We estimate
range expansion at different levels using the infinity norms of the Kro-
necker products of 1D multiresolution wavelet synthesis matrices. As
the first 10 norms (for the finest ten levels of resolution) are all less
than 64, we conservatively encode/decode 6 additional bit planes on
top of the number dictated by the input tolerance.

During block decoding, if the tolerance is τ and the block exponent
is e, the smallest bit plane number to decode is b−6, with b being the
largest integer such that 2b+e ≤ τ . In practice, the actual absolute error
tends to be smaller than the input tolerance due to data smoothness,
so more bit planes than needed are often decoded. Nevertheless, the
required error tolerance is always respected, up to machine epsilon with
respect to the range. Finally, we multiply wavelet coefficients with the
norms of corresponding wavelet basis functions, ensuring equal energy
contributions from the same bit plane on all levels.

Enabling fast lookup. Given a data query that contains an ROI, a
resolution level, and an error tolerance, we need to quickly locate the
relevant files, chunks, and bricks for decoding. At the API level, we
do not make use of cuts, due to the complexity of providing such an
API and because a cut can always be specified using a number of such
queries. Since the topology of T p

r is implicit (index-based), we can
easily ensure all such queries produce valid cuts, as the only constraint
to be satisfied is that whenever a node in T p

r is retrieved, all of its
ancestors (i.e., coarser level nodes and more significant bit planes) —
identified by indexing — are also retrieved. In practice, given such
a query, we locate the files containing the corresponding bits using a
two-stage lookup. First, file lookup in the precision-resolution space
is handled by defining a function that maps a point in that space to a
file ID and a file path, which we define using bit packing (for file ID)
and string concatenation (for file path). Given the requested nodes, we
iterate over the relevant levels and bit planes, and apply this function
each time to obtain the directories containing the relevant files.

Once inside such a directory, we perform spatial lookup to locate
the exact files/chunks/bricks that intersect the requested ROI, relying
on a single indexing scheme that works across brick, chunk, file, and
directory levels. Starting from the least significant bit of a brick’s
interleaved index, portions of this index are assigned one-by-one to
chunks, files, and directories (Fig. 10). This indexing scheme defines
an implicit tree over the space of directories, files, and chunks, which
enables a depth-first lookup algorithm that computes a list of relevant
directories, files, and chunks in logarithmic time, skipping irrelevant
files entirely. Similar schemes have been used previously, e.g., in the
context of sorting objects in a bounding volume hierarchy [48, 57].
Whenever a relevant file is found, we continue the traversal in the same
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Fig. 12: I/O and decompression times for different tile sizes (left) and brick sizes (right) across a wide range of query types. The resolution and
precision are controlled by the R and ε (absolute error) parameters, whereas ROI controls the size of the region of interest (which, when omitted,
means the same as R). Tile size of 83 bricks and brick size of 643 samples appear to be sweet spots that work well across queries.

way to find relevant chunks in the sub-tree under the file. We then
fetch these chunks using the offsets stored in the file. Once a chunk
is fetched, relevant bricks are located using the metadata stored in the
chunk. Although the whole chunk is fetched, we decompress only the
relevant bricks in the chunk to retrieve the requested bits.

Providing random access. Random access to compressed brick data
is supported by storing in each chunk the number of bricks followed by
the ID (interleaved brick index) and the size (in bytes) of every brick,
encoded using base-128 compression [23]. Brick IDs are compressed
by unary coding the differences between consecutive IDs, which tend
to be 1. Likewise, to support random access of chunks, we store the
(dictionary compressed) chunk IDs, chunk sizes, and the total number
of chunks (Fig. 11, left) in each file. In practice, parameters are chosen
such that a file can contain at most tens of thousand of chunks, so that
such a flat indexing scheme still works well. The exponent data is also
stored into chunks in a way that mirrors the bit plane chunks, but in
a separate set of files (Fig. 11, right). A notable difference is that we
also store the maximum exponent per chunk, which allows us to skip
decoding an entire chunk if the maximum exponent is so small that the
error tolerance is achieved even with no bit planes decoded.

Decoding progressively. Progressive decoding is the ability to resume
decoding as new data arrives without redoing previous work. This
capability is useful when a bit stream must be decoded as it is being
transferred to show gradually improving results to the user. Supporting
this feature often means keeping the state of the decoder in memory,
which may not be practical depending on the size of this state. In our
case, coefficients in a block always follow the same order and have
the same precision, so the state for each block consists of the number
of significant coefficients (an integer between 0 and 64), the current
bit plane (an integer between 0 and 63), and the block exponent (11
bits for float64). Thus, the complete state needed for ZFP to resume
decoding can be stored in 24 bits per block of 64 samples in 3D.

At decoding time, the steps performed for encoding are now done in
reverse. In particular, bits are fetched from the streams, decoded, and
“deposited” into a set of bricks, which start empty. Since not all bricks
are present (depending on the query’s ROI), we loosely maintain and
update the current approximation in memory using a hashtable of bricks
of wavelet coefficients, where the key consists of a brick’s interleaved
index and the brick’s resolution level (including the subband). Each
brick stores a grid of wavelet coefficients at a certain resolution level
and subband. During decoding, bricks are updated with newly decoded
coefficient bits, and the field is reconstructed through per-brick inverse
wavelet transform, with missing coefficients assuming the value of
0. To keep a minimal state, we can also do away with the hashtable,
and perform the inverse wavelet transform while having no access
to previously decoded wavelet coefficients as they are presumably
deallocated. Since the transform is linear, however, we can simply
dequantize the (integral) increments obtained by decoding the current
bit plane, inverse transform the floating-point increments, and update
the field with the results.

6 EVALUATION

We evaluate the efficacy of the proposed system using the data sets
in Table 1, which features various types of scientific simulations. The
test computer is a laptop with a 4-core CPU (2.8 GHz Intel Core

Data set
Resolution × Precision Range Compression Compression

(X × Y × Z) × Bits [min, max] Ratio Speed (MB/s)

Pressure [49] (10240×7680×1536) × 64 [−0.23,1.26 ] 1.36× 6.5
Dissipation [38] (4096×4096×4096) × 32 [0.00,82.67 ] 1.41× 11.2
Dark matter [4] (2048×2048×2048) × 32 [0.00,486.31 ] 1.16× 14.2
Temperature [83] (2025×1600×400) × 64 [4.4819.24 ] 1.95× 19.3
Mixed fraction [11] (920×1400×720) × 32 [0.00,1.00 ] 11.36× 26.0
Density [21] (1024×1024×1024) × 64 [1.00,3.00 ] 2.11× 35.9

Table 1: Tabulation of the data sets used for evaluation, with compression
ratios and compression speeds when absolute tolerances are 5×10−8

for float32 and 10−16 for float64.

i7-7700HQ), 32 GB of RAM and (unless otherwise specified) a 122
MB/s spinning hard drive. Note that we always use only one CPU
core in all tests. Throughout this section, the term “tolerance” implies
precision levels (which corresponds to the RMSE in the ideal case); a
high tolerance corresponds to a low-precision level and vice versa.

In Table 1, we show the encoding times and near-lossless compres-
sion ratios for all the data sets used in this paper. Our encoding speed
reduces linearly from 35 MB/s (for Density at 4 GB) to 6.5 MB/s
(for Pressure at 900 GB), likely due to effects of the disk cache and
overheads associated with updating bookkeeping data structures that
grow linearly in the size of the data. For memory, we note that the
largest data set, Pressure (900 GB), is encoded using only 2.5 GB of
RAM. For near-lossless encoding (where the tolerance is set to about
the machine epsilon relative to data range), we achieve varying degrees
of reductions, but all are reduced to less than the original size. For all
tested data sets, the overhead of metadata is on the order of 1/1000
relative to the compressed data. Our system also supports also lossless
compression of float32 fields, but we note that in practice the last few
bit planes are effectively noise and hence are expensive to compress
while adding little to no value.

6.1 System Parameters
To find optimal values for the free parameters we execute concrete
instances of the various query types on the different data sets. We have
found that grouping chunks of different bit planes and intra-brick sub-
bands in the same file reduces query time across the board (compared
to separating them), likely due to disk prefetching and reduced seek
time. Chunks belonging to different spatial file regions (Fig. 10) are
still appropriately stored in separate files.

Tile size. To determine a tile size (i.e., TG, the spatial extent of a
chunk) that supports fast I/O across queries, we fix the brick size to
643 samples, vary the tile size from 23 to 163 bricks, execute different
types of queries, and record the I/O as well as decompression time; the
latter involves chunk/brick lookup, low-level decompression, inverse
transforms and any in-memory data movement/transformation. The
results can be seen in Fig. 12 (left). Larger tiles (hence larger chunks)
tend to result in significantly reduced I/O time, especially at high-
resolution levels; in our experiments the tile size of 163 bricks reports
the lowest I/O time, except for the smaller ROIs of sizes 2503 and 503.
We choose the tile size of 83 bricks for the system as this size works
almost as well and is better for small-ROI queries. With this choice,
TG = 5123 since the brick size is 643. Note that since a chunk is only
an I/O unit, the chunk size (controlled by TG) as expected has almost
no effects on the decompression time.

Brick size. We next vary the brick sizes from 163 to 1283 samples,
while keeping the tile size constant in number of samples (computed
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(a) Reference – 2
GB

(b) SZ 6.5 MB,
0.976 SSIM

(c) Ours 6.4 MB,
0.965 SSIM

(d) TTHRESH 6.4
MB, 0.982 SSIM

(e) Ours 800KB,
0.910 SSIM

(f) TTHRESH 857
KB, 0.968 SSIM

(g) Memory usage and decoding
time, both in logarithmic scale.

Fig. 13: (Half of) Density — Comparison of data quality between (b) SZ, (c) ours and (d) TTHRESH at 300× compression ratio. (e, f) Same comparison
but at 2600× ratio, (SZ did not produce a result here). (g) Plots of decode time and memory usage for the three methods. Our method uses orders of
magnitudes less time and memory for decoding compared to SZ and TTHRESH.

Fig. 14: Temperature — Our method (left, 2MB) supports very high
compression ratios > 1000× where ZFP (middle, 12 MB) struggles, while
maintaining the same decoding performance (right plot).

using the choices of 643-samples per brick and 83-bricks per tile). The
results are shown in Fig. 12 (right), in which a few trends can be ob-
served. First, I/O time is lower with larger brick sizes, likely due to less
metadata for bookkeeping of bricks in each chunk, resulting in smaller
chunks on average. Decompression time increases for bricks that are
either too small or too large. Small bricks are faster to decompress
themselves but also require reading and decoding a large amount of
bookkeeping metadata. Using very small bricks helps only the tiny
503-ROI query. Based on these observations we choose our brick size
to be 643 (i.e., Bx =By =Bz = 64), which works well across the queries
for both I/O and decompression. Subsequent experiments assume the
brick size of 643 samples and the tile size of 83 bricks.

6.2 Compression Comparisons
We compare our method against the state-of-the-art techniques, namely
SZ [75], TTHRESH [5], JPEG2000 [76] (using OpenJPEG [2]), ZFP, and
VAPOR [51]. Compared to SZ and TTHRESH, our decompression time
and memory usage are orders of magnitude lower. Our data quality
is competitive against both at ≈ 300× compression ratio and is only
slighty worse than TTHRESH at very high ratios (Fig. 13). Note that our
results are decoded from a single data layout, whereas TTHRESH and
SZ have to re-compress each time. Similarly, at comparable data sizes,
JPEG2000 has slightly better data quality (39.0 dB versus 43.9 dB) at
the expense of 2000× higher memory usage and 15× slower decom-
pression time. Using a series of Qmixed queries with increasingly lower
tolerances, in Fig. 14 we show that our method achieves ZFP’s decoding
speed while enabling very high compression ratios. Furthermore, for
mid- and low-quality levels (PSNR < 50 dB), our system can decode
at lower resolutions, thus achieving significantly lower decoding time.
Compared to VAPOR, our method achieves substantially better quality at
300× compression ratio, while retrieving the data using one-fourth the
memory and one-third the time, as well as avoiding blocking artifacts
at very low bit rates (Fig. 15).

Reconstruction quality. Next, we study data quality for 16 approx-
imations at the vertices of a 24-point grid in the precision-resolution
space. We plot the PSNR at each point, and connects point that lie
on the same resolution (Fig. 16). The rate-distortion curves suggest
that the data quality at low-resolution levels quickly reaches a plateau
(which is expected since the low number of data points, no matter how
accurate, puts a hard limit on data quality measured in PSNR). The best
rate-distortion curve can be thought of as an imaginary “envelope” that
is the upper bound of all four individual curves.

7 CONCLUSION AND FUTURE WORK

We modeled the full space of data reductions with a novel tree T p
r

that unifies precision and resolution, and accepts approximations as

Fig. 15: (Left) Dark matter — Comparison of data quality between our
system (bottom left, 109 MB, SSIM 0.78) and VAPOR (bottom right, 96
MB, SSIM 0.69) (Middle and right) Density — Ours (middle, 10 MB) is
free from blocking artifacts visible with VAPOR (right, 13 MB).
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Fig. 16: Rate-distortion curves going through fixed-resolution points in
precision-resolution space.

sub-trees produced by valid cuts of T p
r . The parameters and trade-offs

needed for practical data layouts encoding the tree are provided. Finally,
we provided an empirical study on the system-level considerations
leading to an efficient design, which we showed to be competitive
with the state of the art. Our T p

r captures the essential dependencies
among nodes, but not all dependencies. For example, with filters such
as wavelets, there exist data dependencies among neighboring nodes,
required for inverse filtering (we handled this in our implementation).
In addition, how cuts can be economically represented in memory is an
open question. For future work, we would like to determine if and how
optimal mixtures of reductions can be automatically found for scientific
tasks with different notions of errors and costs. Extending the current
framework to different grid types, unstructured data, and time-varying
data is yet another direction. Finally, studying how applications such
as interactive GPU rendering can benefit from a data layout such as the
one proposed is important.
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