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Figure 1: Performance improvement of our method on the 278 million tetrahedra Japan Earthquake data set. (a) A reference volume
ray marcher without our method, at 0.9 FPS (10242 pixels) on an NVIDIA RTX 8000 GPU. (b) A heat map of relative cost per-pixel in
(a). (c) and (d), the same, but now with our space skipping and adaptive sampling method, running at 7 FPS (7× faster).

structure is of key concern. If the overhead incurred by the structure
is too high, it can overshadow the performance gained from the re-
duced number of samples taken. To reduce this overhead, Hadwiger
et al. [13] proposed SparseLeap, which leverages triangle rasteri-
zation hardware to compute per-pixel lists of active ray segments
by rendering occupancy geometry. These segments act as the space
skipping acceleration structure in a subsequent render pass. Ganter
et al. [8] recently extended SparseLeap to leverage OptiX [24] and
NVIDIA’s ray tracing cores to improve acceleration structure build
time and use hardware accelerated BVH traversal to reduce overhead.
However, both methods must rebuild the structure on transfer func-
tion changes, do not consider adaptive sampling, and rely on either
an octree or a summed area table to build the occupancy geometry,
which can result in poor adaptivity to an unstructured mesh.

In the context of unstructured meshes, relatively little prior work
has investigated object space adaptive sampling or empty space skip-
ping. The bulk of methods for rendering such volumes focus on
rasterization methods [3,5,19,20,27], requiring either dynamic level-
of-detail strategies [4, 6] or a volume simplification pre-processing
step [9, 18, 28] to achieve adaptive sampling. Standard approaches
for ray tracing such data [2, 10, 12, 22] step from cell-to-cell along
the ray, providing an accurate image at significant cost. Nelson et
al. [22] skip individual empty mesh elements, but do not support
skipping larger regions at once. Prior work has also proposed raster-
izing proxy meshes to perform ray tracing on the GPU [21, 34], but
encounter similar adaptive sampling challenges with regard to which
proxy geometry to dispatch. Sample based ray casting methods [25]
have shown performance improvements over both rasterization and
cell iteration methods, though have not investigated empty space
skipping or adaptive sampling.

In this work, we propose new strategies for empty space skipping
and adaptive sampling for sample-based raycasting of unstructured
meshes. In contrast to prior work, our empty space skipping struc-
ture allows skipping larger regions of space and adapts well to
the underlying mesh. Moreover, we formulate our space skipping
structure in a manner suitable for hardware acceleration, without
requiring a rasterizer. Finally, we propose an intuitive adaptive sam-
pling approach for occupancy geometry methods without requiring
additional preprocessing. Our contributions are:

• An extension of “occupancy geometry” to unstructured data;

• A lightweight empty space skipping method for unstructured
data, which leverages GPU ray tracing hardware; and

• An adaptive sampling approach which provides a bound on
error using three intuitive parameters.

ABSTRACT

Sample based ray marching is an effective method for direct vol-
ume rendering of unstructured meshes. However, sampling such
meshes remains expensive, and strategies to reduce the number
of samples taken have received relatively little attention. In this
paper, we introduce a method for rendering unstructured meshes
using a combination of a coarse spatial acceleration structure and
hardware-accelerated ray tracing. Our approach enables efficient
empty space skipping and adaptive sampling of unstructured meshes,

and outperforms a reference ray marcher by up to 7×.
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1 INTRODUCTION

Direct volume rendering (DVR) is widely used in the scientific
visualization community, enabling scientists to interactively explore
their data and form hypotheses. A standard approach for DVR is
raycasting, where rays are cast through the volume for each pixel
and the color and opacity of the volume is sampled and integrated
along each ray to compute an image of the volume. Interactive ray
casting techniques have been demonstrated for both structured [15,
23] and unstructured [21, 22, 25, 32, 34] volumes, and map well to
the parallel hardware available on modern CPUs [23, 25, 31] and
GPUs [15, 21, 22, 32, 34].

However, when the volume becomes expensive to sample the cost
per-ray increases, limiting interactivity. For unstructured data, the
cost of these samples can be reduced, as demonstrated by Wald et
al. [32], by leveraging the ray tracing cores available on NVIDIA’s
Turing GPUs. When used in a naive volume raycaster, their ap-

proach improved frame rates by 1.5× to 3.8×. To further improve
performance, the number of samples taken per-ray must be reduced.
Numerous methods have been proposed for regular grid volumes,
which roughly fall into two categories: empty-space skipping, which
avoids sampling fully transparent regions; and adaptive sampling,
which takes fewer samples in regions containing less interesting
data values. Prior work has employed a range of acceleration struc-
tures to enable these optimizations, e.g., macrocells [15, 23], oc-
trees [1, 11, 16, 17, 26, 35], KD-trees [29, 30] and BVHs [14].

When considering an additional acceleration structure for DVR,
the performance overhead introduced by building and traversing the
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Figure 2: An illustration of our method: (a) Given an unstructured mesh; (b) we build a coarse spatial subdivision over the mesh elements to
partition them into a set of convex, disjoint regions. (c) These partitions are then shrunk to tightly fit the contained elements. For each region we
compute the min/max of the scalar field and the transfer function maximum opacity and color variance. (d) We use hardware accelerated ray
tracing to iterate rays through the “active” partitions, skipping transparent ones and unoccupied space. (e) Within each partition we use the local
variance to adapt the sampling rate to the underlying data variation, thereby taking fewer samples in more uniform regions of the data.

2 METHOD

Unstructured meshes pose unique challenges to implementing an
effective empty space skipping and adaptive sampling strategy. Such
meshes are often refined by the simulation in areas of interest, and
the method must adapt to this non-uniformity, where the size and
distribution of the elements is not known a priori. Furthermore, as
the mesh is not guaranteed to be convex, the method must account for
three categories of coarser regions: unoccupied regions containing
no elements, regions containing entirely transparent elements, and
regions where the field does not vary significantly across elements.

In our method, we first partition the volume into a set of convex,
disjoint regions (Section 2.1), which are shrunk to tightly fit the
contained mesh elements (Section 2.2). We then compute metadata
about the elements contained in these partitions, which we use to
guide both the empty-space skipping (Section 2.3) and adaptive
sampling (Section 2.4). Finally, we use the Turing GPU’s new ray
tracing hardware to accelerate traversal of these partitions for empty
space skipping, and our adaptive sampling method to reduce the
number of samples taken in each partition. An overview of our
method is shown in Figure 2.

2.1 Partition Generation

To partition the mesh elements, we use the leaves of a spatial KD-tree
(Figure 2b), which are convex, disjoint, and adaptive. The disjoint,
non-overlapping property ensures that a ray will exit one partition
before entering the next, and the convexity property ensures that
the ray will enter each partition only once. As the elements in the
mesh are unlikely to be uniform in size or distribution, the adaptivity
in partition size provided by the KD-tree is desirable over a more
fixed structure (e.g., grids [8], octrees [13]) to ensure a roughly even
distribution of rendering cost for the generated partitions. We note
that it is possible for a tetrahedron (or other mesh element) to appear
in more than one leaf node, and thus partition. In this case, rays
entering a given partition will only sample the portion of the element
contained inside the partition’s bounds.

For each partition we compute and store the scalar field range of
the contained elements. For those elements which are only partly
contained in the partition we include the value range of the entire
element for simplicity. When the transfer function is changed we
apply it across the field range of the partition to determine the max-
imum opacity and color variance of the partition. The complexity
of this computation is linear in the number of values in the transfer
function, and is independent of the number of elements contained in
the partition. As there are likely far fewer values in the transfer func-
tion than elements in the mesh, this provides better responsiveness
to user changes to the transfer function. The variance computation
is parallelized over the partitions, allowing for faster updates. The
per-partition variance values are normalized relative to the minimum
and maximum variances over all partitions, to compute consistent
per-partition sampling rates.

2.2 Partition Refinement

Although the KD-tree leaves provide the desired convex and disjoint
partitioning of the volume, the bounds of a leaf do not necessarily
tightly bound the contained elements (see Figure 2b). As such, the
initially computed partitions may contain large regions of unoccu-
pied space, especially in the case of non-convex, hollow, or non-grid
aligned meshes. To provide tighter bounds, we shrink the bounding
box of each partition to the intersection of the original bounds and
the bounds of the contained elements (Figure 2c).

2.3 Empty Space Skipping

Given the bounds of the partitions, we can leverage hardware acceler-
ated ray tracing to accelerate intersection tests against the partitions
to find ray entry and exit points. The RT cores available in Turing
GPUs support both hardware accelerated BVH traversal and ray-
triangle intersection tests. To fully utilize the available hardware,
we first tessellate the partition bounding boxes, then construct an
OptiX [24] BVH over the generated triangles. This BVH need only
be rebuilt when the underlying partition geometry changes, and is
not tied to the transfer function.

To find the entry and exit points of the ray in a partition we use
OptiX to trace rays against the partition geometry; first with back-
face culling enabled to find the entry point, then from the entry
point with front-face culling enabled to find exit point. The t range
along the ray between tenter and texit is thus the range to integrate the
volume over to sample the partition. If the ray intersects a completely
transparent partition it is skipped and we advance the ray to find the
next partition. If no partition is found, the ray is terminated and the
computed color and opacity written to the framebuffer.

To advance to the next partition we set the ray’s tmin to texit − ε .
We apply a small offset back by ε to allow for intersection with
potentially coplanar partition boundary faces. From this new start
point we then find the ray’s entry and exit points with the next
partition as before.

2.4 Adaptive Sampling

To adaptively sample each partition we use the transfer function
variance for the partition computed in Section 2.1 to select the step
size for the ray marching process. In partitions with relatively similar
colors the variance is low, and a correspondingly low number of
samples can be taken. Regions with higher color variance require
correspondingly more samples to preserve accuracy. The step size
is computed using an intuitive equation which allows users to place
an upper bound on the tolerable maximum step size, and thus error;
and control how quickly the algorithm transitions from high to
low quality sampling based on the partition’s variance. Given a
minimum step size s1 to use for the highest quality sampling and
the maximum step size s2 to use for the lowest quality sampling, we
compute the step size for a partition with normalized variance σ

2

using s = max(s1 +(s2 − s1)|min(σ , 1)−1|p, s1).
The final user controllable parameter is p, referred to as the adap-

tive power, which allows the user to tune how quickly the algorithm



will transition to lower quality sampling in medium variance parti-
tions. We restrict that p ≥ 1, as this lower bound corresponds to a
simple linear interpolation between s1 and s2.

With this equation the user can easily tune the sampling quality
to produce an acceptable image at some desired frame rate. If the
user wants a lower quality image at a higher frame rate they can
increase s1 and s2, or for a more expensive but higher-quality image,
decrease both values. If desired, the adaptive sampling can be
disabled entirely by setting s1 = s2. If the user finds too few samples
are taken in partitions with medium variance they can increase p to
bias s towards s1 in these partitions. Similarly, to improve frame rate
at the cost of error in medium variance partitions p can be decreased,
to bias s towards s2.

Given the sampling step size for a partition we integrate the ray
front to back through the partition, using the rtx-shared-faces
point query kernel described by Wald et al. [32] to sample at points
along the ray. To ensure correct opacity when compositing parti-
tions integrated at different step sizes we use an opacity correction
term [7]. Given the current sample’s opacity α we compute the

corrected opacity as α̃ = 1− (1−α)s/s1 . Finally, we perform early
ray termination if the ray becomes opaque.

3 EVALUATION

We evaluate our approach using four tetrahedral mesh volumes (Fig-
ure 3) covering a range of data set sizes, on an NVIDIA RTX 8000
GPU, primarily due to its large memory capacity. Our renderer is
implemented using OptiX 6 and CUDA 10. For the Jets, Agulhas
Current and Japan Earthquake datasets we set p= 2, on the Deep Wa-
ter Asteroid Impact we set p = 6. We first evaluate the performance
gains provided by our empty space skipping method (Section 3.1),
after which we combine it with our adaptive sampling method and
evaluate the two in combination (Section 3.2). Finally, we measure
the overhead incurred by the two methods in Section 3.3.

3.1 Space Skipping Improvements

Empty space skipping is able to reduce the samples taken per-ray in
two ways: by skipping regions outside the volume, and by skipping
100% transparent partitions. These regions can be skipped, since
they do not contribute to the final image (Figure 5b).

With regard to the former, we observe a negligible performance
improvement when only skipping unoccupied space compared to
naively taking samples potentially outside the volume. The volumes
we conduct our evaluation on are relatively dense, providing little
unoccupied space to skip in the first place. Moreover, it is likely that
the hardware accelerated BVH traversal performed when querying
a point is able to quickly determine the point is outside the volume
and terminate, incurring little cost per-sample.

The performance improvement provided in the latter case, skip-
ping 100% transparent partitions, is highly dependent on the transfer
function chosen by the user (Figure 6). When using a relatively “bi-
nary” transfer function, where background regions are made entirely
transparent, a large number of partitions can be discarded, yielding a
significant performance improvement. However, if these background
regions are made slightly opaque it is no longer possible to discard
them, and relatively few empty partitions can be skipped, thereby
limiting the performance improvement which can be achieved.

3.2 Adaptive Sampling Improvements

Our adaptive sampling approach can provide significant perfor-
mance improvements by reducing samples taken in low variance
partitions (Figure 5c), with little sacrifice in image quality. When
combined with our empty space skipping approach, adaptive sam-
pling improves performance in semitransparent low-variance regions
(see Figure 6). For high-quality rendering using both methods in
combination we find significant performance improvements. On
the Jets, Agulhas Current and Deep Water Asteroid Impact we

Jets, 12M tets (vertex centered data)

(a) Ref., 4.8 FPS (b) Adapt., 16.7 FPS (c) SSIM, .997

Agulhas Current, 35M tets (cell centered data)

(d) Reference, 14 FPS (e) Adaptive, 48 FPS (f) SSIM, .98

Japan Earthquake, 278M tets (vertex centered data)

(g) Ref., 0.9 FPS (h) Adaptive, 7 FPS (i) SSIM, .98

Deep Water Asteroid Impact, 366M tets (cell centered data)

(j) Reference, 4 FPS (k) Adaptive, 14 FPS (l) SSIM, .97

Figure 3: Quality and performance comparisons of our method against
a reference volume ray marcher [32], using representative views
and transfer functions. For comparable image quality our method
performs roughly 3−7× faster, achieving its greatest speedup in the
most irregular data set (Japan Earthquake). More aggressive quality
settings can yield higher speedups, at the cost of image quality. For
larger images, please see the supplemental material.

achieve a roughly 3.5× improvement in rendering performance;
on the Japan Earthquake we achieve a 7.8× improvement; in all
cases SSIM ≥ 0.97 (Figure 3).

In Figure 4 we evaluate the impact on frame rate, samples taken
and image quality as the tolerable maximum step size s2 is increased.
As s2 is increased, the adaptive sampling can take larger steps in low
and medium variance regions, reducing samples taken and thereby
improving performance, at the cost of image quality. At the extreme
end we find that even when taking 1/3 or fewer samples than the
reference, a tolerable medium to high-quality image can still be
provided. Moreover, significant reductions in samples taken, and
thus increases in performance, can be achieved with little perceivable
impact on image quality. For volumes with more expensive sampling,
e.g., higher-order interpolants or non-hardware accelerated tet-mesh
sampling, the performance improvement achieved by reducing the
number of samples taken is likely to be even greater.

3.3 Acceleration Structure Overhead

In our evaluation we found the added work of intersecting rays with
the partition boundaries is negligible. With relatively few generated
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Figure 4: The effect of increasing the maximum step size (tolerable error) on rendering performance, samples taken and image quality for each
data set. As expected, image quality decreases as the maximum step size is increased, though remains high-quality (SSIM ≥ 0.97) even when
taking just a fraction of the original samples required. Using our approach users can tune the error incurred as desired to achieve improved frame
rates for unstructured volume rendering.

(a) Reference (b) Space skipping only. (c) Plus adapt. sampling.

Figure 5: A heatmap of the samples taken per-pixel compared to
the reference (a), when using (b) just space skipping, and (c) space
skipping plus adaptive sampling. (a) The reference takes a large
number of samples for most pixels, except a few where early ray
termination occurs. (b) Space skipping avoids unoccupied and fully
transparent partitions, though takes many samples in visible partitions.
(c) Adaptive sampling reduces samples taken in visible low-variance
regions, reducing samples while providing similar image quality.

partitions, even for large data sets, and hardware accelerated ray
tracing used to intersect these partitions, there is little cost incurred
to traverse them. For example, on the Japan Earthquake, which
contains the largest number of partitions (4725), we find tracing rays
through these partitions takes just 3ms.

4 LIMITATIONS, FUTURE WORK, AND CONCLUSION

We have presented new strategies for leveraging empty space skip-
ping and adaptive sampling in the context of volume rendering
unstructured meshes. Our method significantly reduces the number
of samples required per-pixel, improving performance without sac-
rificing image quality. Our adaptive sampling method exposes an
intuitive set of parameters to users, allowing them to easily control
the trade off between performance and image quality. Furthermore,
our approach is able to leverage the new ray tracing hardware avail-
able on recent GPUs and incurs little overhead as a result.

Although we have demonstrated significant performance improve-
ments when using our method, it is not without limitations. First,
as with other adaptive sampling approaches we find diminishing
returns as the sampling rate becomes very low. Second, our adaptive
sampling is only based on the transfer function, and would require
additional metadata per partition to account for gradient shading or
scattering. Third, our occupancy geometry must be rebuilt on mesh
geometry changes, which would impact performance on both time
series data as well as runtime level-of-detail strategies. On large
datasets such as the Deep Water Asteroid Impact, we encountered
numerical precision issues when traversing the partitions. These
precision issues may be addressed by adapting our epsilon offset to
account for the data set size, or using a custom higher-precision inter-
section test for the partition geometry. Finally, although the median

Reference: 4 FPS Reference: 4 FPS

Space skipping only: 20 FPS Space skipping only: 5 FPS

Adaptive only: 10 FPS Adaptive only: 12 FPS

Together: 24 FPS Together: 13 FPS

Figure 6: Empty space skipping works best for “binary” transfer func-
tions, where parts of the volume are 100% transparent (left); but on its
own breaks down if regions are not 100% transparent (right). Adaptive
sampling is able to reduce the sampling rate in these semitransparent
low-variance regions, improving performance for such cases.

split KD-tree provides a reasonable spatial partitioning, taking into
account the underlying scalar field may provide better results. For
example, on the Deep Water Asteroid Impact the water is split into
multiple partitions; however, the field is uniform across the region
and a single partition would suffice.

In future work, it would be valuable to explore a method for
automatically selecting the adaptive sampling parameters based
on some runtime refinement to provide a desired image quality,
instead of requiring users to manually tune the sampling parameters.
Although we have evaluated our method in a GPU raycaster to
leverage hardware accelerated ray tracing, it could translate well
onto the CPU using Embree [33]. While we have only evaluated
our method on linearly interpolated tetrahedral meshes, a similar
approach may work well for other unstructured volumes, adaptive
mesh refinement (AMR) volumes, and higher order interpolants.
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Japan Earthquake, 278M tets (vertex centered data)

(g) Reference, 0.9 FPS (h) Adaptive, 7 FPS (i) SSIM, .98

Deep Water Asteroid Impact, 366M tets (cell centered data)

(j) Reference, 4 FPS (k) Adaptive, 14 FPS (l) SSIM, .97
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