Eurographics Symposium on Parallel Graphics and Visualization (2018)
H. Childs, F. Cucchietti (Editors)

VisIt-OSPRay: Toward an Exascale Volume Visualization System

Qi Wu!, Will Usher!2, Steve Petruzza!, Sidharth Kumar!, Feng Wang!, Ingo Wald?, Valerio Pascucci! and Charles D. Hansen'

IScientific Computing and Imaging Institute, University of Utah
2Intel Corporation

DB: CCVarsik _ OB: richtmyer_meshkov.ick
Cycle:0 Tme:229829 r . Cycle:0 ' Tme0

Figure 1: High-quality interactive volume visualization using Vislt-OSPRay: a) volume rendering of O, concentration inside a combus-
tion chamber [CCM18]; b) volume rendering of the Richtmyer-Meshkov Instability [CDD*02]; ¢) visualization of a supernova simu-
lation [BMO7]; d) visualization of the aneurysm dataset using volume rendering and streamlines; e) scalable volume rendering of the
966GB DNS data [MKM99] on 64 Stampede2 Intel® Xeon Phi"™" Knight's Landing nodes.

Abstract

Large-scale simulations can easily produce data in excess of what can be efficiently visualized using production visualization
software, making it challenging for scientists to gain insights from the results of these simulations. This trend is expected to
grow with exascale. To meet this challenge, and run on the highly parallel hardware being deployed on HPC system, rendering
systems in production visualization software must be redesigned to perform well at these new scales and levels of parallelism.
In this work, we present Vislt-OSPRay, a high-performance, scalable, hybrid-parallel rendering system in Visit, using OSPRay
and IceT, coupled with PIDX for scalable 1/0. We examine the scalability and memory efficiency of this system and investigate
further areas for improvement to prepare Vislt for upcoming exascale workloads.

CCS Concepts
» Computing methodologies — Computer graphics;

1. Introduction

Interactive visualization plays a key role in scientific research, as-
sisting with exploring data, formulating hypotheses, communicat-
ing results, and debugging simulations. However, current simu-
lations running on petascale HPC platforms can easily produce
datasets beyond what can be visualized on typical workstations,
making interactive visualization of such data challenging. To ad-
dress this challenge, numerous distributed parallel rendering tech-
niques that are capable of achieving interactive framerates have

© 2018 The Author(s)

Eurographics Proceedings © 2018 The Eurographics Association.

Intel, Intel Core, Xeon, and Xeon Phi are trademarks of the Intel Corporation in the U.S.
and other countries. Other product names and brands may be claimed as property of others.

been proposed [Hsu93,HBC12, KWN*13,EBA12, GPC*15]. How-
ever, these methods tend to have project-specific implementations,
or are not incorporated into common visualization tools, making
them inaccessible to general users. General visualization software
like ParaView [AGLO5] and VisIt [CBW*12] include support for
distributed rendering via a client/server architecture; however, their
performance can be far behind the current state-of-the-art. As simu-
lations grow in scale, the integration of new scalable rendering
techniques into production visualization software is crucial for gen-
eral science users. By integrating such functionality into existing

Wu et al. / Vislt-OSPRay: Toward an Exascale Volume Visualization System

Figure 2: Volume rendering comparison of six different renderers in Vislt: (a) RayCasting:Compositing; (b) RayCasting:SLIVR; (c) OSPRay;
(d) Splatting; (e) 3D-Texture; (f) SLIVR. Our OSPRay integration (c) can produce high-quality images identical to the baseline (a) at up to

30 times higher framerates.

tools, users who are familiar with these widely used systems will
benefit from scalable parallel rendering, without having to learn
new, project-specific, visualization systems to explore their data in-
teractively.

In this work, we present VisIt-OSPRay, a scalable volume visual-
ization system integrated into Vislt, which focuses on address-
ing challenges encountered when visualizing hundred gigabyte-
to terabyte-sized volumetric datasets on recent Intel® Xeon® and
Intel® Xeon Phi™ processor-based architectures. One such moti-
vating dataset is the coal-boiler simulation produced by the Univer-
sity of Utah’s Carbon-Capture Multidisciplinary Simulation Cen-
ter (CCMSC) [CCM18] using the Uintah Computational Frame-
work [PGHO6]. This simulation aims to guide the design of next-
generation electric power plants by integrating simulation into the
design process. Although such simulations can already produce up
to petabytes of data, simulating the coal-boiler at the resolution and
accuracy required to accurately evaluate designs gives rise to prob-
lems between 50 to 1000 times larger than those solvable on current
machines, making such problems perfect candidates for exascale
computing.

To enable interactive visualization of large-volume datasets in
Vislt and leverage shared-memory parallelism on current and
emerging CPU and many-core architectures, we re-engineered
Vislt’s distributed renderer to a hybrid MPI + threads model. On
each node, we use OSPRay [WJA*17] for fast CPU-based render-
ing. To improve image compositing, we use IceT [MKPH11] inside
Vislt’s sort-last rendering pipeline, instead of the direct-send com-
positor used by Vislt’s RayCasting:SLIVR renderer. Finally, for fast
parallel I/O, we use the Parallel IDX (PIDX) [KVC*11] library.

Our implementation achieves up to 30 times higher framerates
than Vislt’s RayCasting:Compositing renderer, while producing
equivalent high-quality images (Figure 2). Furthermore, we report
significant strong and weak scaling improvements up to 32,768
CPU cores on recent HPC platforms equipped with Intel® Xeon
Phi™ (KNL) processors and Intel® Xeon® Platinum Skylake (Sky-
lake) processors. Our specific engineering contributions to VisIt’s
distributed rendering capabilities are:

e Moving to a hybrid-parallel execution model,

e Leveraging OSPRay for fast volume rendering, and
e Improving the use of IceT for image compositing.

2. Previous Work

Volume rendering is a standard approach for visualizing 3D scalar
fields, first proposed in the late 80s [Lev88, DCHS88, Sab&8].
Although later work by Levoy [Lev90] improved the perfor-
mance of ray-tracing-based methods by introducing empty space
skipping and early ray termination, volume rendering remains a
computation-, memory-, and I/O-intensive task. A large body of
work has continued to study how the performance can be improved
further.

In the context of desktop volume rendering, previous work has
investigated the use of GPUs [CN93, CCF94, KW03, MRH10] and
better leveraging CPUs [KTW*11, RWCB15, WJA*17]. Methods
such as rendering proxy geometry [KWO03] and direct volume ray-
tracing [MRH10] have been used extensively, as both can be eas-
ily parallelized. In this work, we use OSPRay [WJA*17] as the
rendering back-end, which is a state-of-the-art high-fidelity CPU
ray-tracing library for interactive scientific visualization. It is im-
plemented using Embree [WWB*14], for basic high-performance
ray-tracing kernels and acceleration structures, and ISPC [PM12],
to write well-vectorized code when implementing renderers, vol-
umes, and geometries in the ray tracer. Moreover, OSPRay offers
an easy-to-use C APIL is extendable via modules (e.g., [WKJ*15,
VSW*17,UAB*17]), and is open-source.

In the field of distributed volume rendering, extensive research
has focused on reducing image compositing time for sort-last ren-
dering [MEFC94] on large parallel systems. Although the volume
rendering process is easily parallelized, the final compositing step
amounts to a global reduction and becomes the main performance
bottleneck at high core counts. A great number of image composit-
ing algorithms can be found in the literature. See, for example,
serial direct send [Hsu93, MPHK93], binary tree [Kui91], binary-
swap [MPHK93, YCMO08], and radix-k [PGR*09], all of which
are available in IceT [MKPHI11]. These methods typically con-
sider only MPI-parallel rendering, where one process is run per

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

Wu et al. / Vislt-OSPRay: Toward an Exascale Volume Visualization System

|VCLH mdserver‘

ey |

A

el 2 G

AVAAA Scalable Parallel Rendering

CLI

OSPRay threading Composition

engine_par
enginhe_par

HG”UI _ Viewer
A

Local Device

Remote Server

engine_par

Figure 3: The high-level component-based design of Vislt’s client server system. The GUI, Command Line Interface (CLI) and Viewer
components run on the user’s workstation and are in charge of handling user interactions and displaying the visualization. Updates to the
visualization and data flow are sent to the Vislt Component Launcher (VCL) component running on the remote server. On the remote server,
the VCL will launch the mdserver, responsible for metadata retrieval, on the master node, and multiple parallel engines on the compute
nodes, to execute computation and rendering tasks. The partial images produced by each engine will then be composited (e.g., using IceT) to

produce the final image that is sent back to the viewer.

core. Howison et al. [HBC12] demonstrated that for multi- and
many-core CPUs, hybrid parallelism—specifically, using threads
and shared memory for intra-node parallelism and MPI for inter-
node communication—is more efficient in terms of speed and
memory than using only MPI for both intra- and inter-node par-
allelism.

Grosset et al. [GPC*15] proposed the TOD-Tree algorithm,
which uses parallel direct send for intra-node compositing and a K-
ary tree method for compositing between nodes. The TOD-tree al-
gorithm maps well to multi- and many-core CPUs by using threads
for parallel direct send within a node and MPI for tree-based com-
positing between nodes. However, TOD-Tree requires that the vol-
ume bricks owned by each node together form a convex shape, pre-
cluding it from use in Vislt, which cannot make such a guarantee. In
Vislt, the volume bricks assigned to each node are often not convex
in aggregate, due to the use of load balancing.

Prior studies with similar goals to our own have also sought to
integrate scalable volume rendering into production visualization
software. Childs et al. [CDMO06] implemented the first parallel vol-
ume renderer in Vislt, RayCast:Compositing, using a sort-middle
pipeline, providing the ability to render large data at full resolution
to VisIt users. Fogal et al. [FCS*10] developed a data-distributed
multi-GPU volume rendering system in Vislt that supported static
and dynamic load balancing via a K-D tree decomposition. Further-
more, Fogal et al. [FCS*10] implemented a data bypassing scheme
to prevent Vislt from down-sampling the volume data when it ex-
ceeded a single GPU’s memory and integrated IceT for efficient
image compositing. To accelerate software rendering, Brownlee et
al. [BPL*12] integrated Manta [BSP06], a fast CPU ray tracer, into
both Vislt and ParaView. This integration was further improved
by Brownlee et al. [BFH12] with GluRay, a library that redirects
OpenGL calls to Manta for efficient rendering. However, these im-
plementations (Manta, GluRay) were intended for use on a single
workstation, rather than distributed rendering on clusters.

The Remote Visualization Group at the Texas Advanced Com-

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

puting Center (TACC) integrated OSPRay into ParaView and Vislt
via two libraries called pvOSPRay and visitOSPRay. Their inte-
gration mapped OSPRay’s API directly to VTK [SLM04], making
the OSPRay integration transparent to the rest of the system, at the
expense of adding an additional layer of complexity. To further im-
prove performance and reduce complexity, the ParaView team has
replaced pvOSPRay by directly integrating OSPRay as a VTK ren-
der pass. In our work, we follow a similar approach and integrate
OSPRay as an avtFilter in Vislt.

3. Volume Rendering in VisIt

As a general tool for visualization, Vislt supports several volume
rendering algorithms. These rendering algorithms can be classified
into two categories, describing whether or not the algorithm is hard-
ware accelerated. Hardware-accelerated renderers in Vislt, e.g., the
Splatting [Wes90] and 3D Texture [CN93] renderers, leverage ac-
celeration devices such as GPUs for rendering. When rendering
with a hardware-accelerated method Vislt will down-sample the
volume data to fit it into the GPU memory, precluding such meth-
ods from creating high-quality images of large datasets using dis-
tributed rendering (see Figure 2). There is another ongoing project
in parallel with our work to integrate OSPRay into Vislt [Hot18],
which proposes to integrate OSPRay as an acceleration device, thus
precluding it from rendering large datasets at high quality.

Software renderers, also referred to as scalable renderers
(SR) by Vislt, can provide parallel data-distributed render-
ing using CPUs. Vislt currently has two software renderers:
RayCasting:Compositing and RayCasting:SLIVR. The RayCast-
ing:Compositing renderer [CDMO06] employs a sort-middle ap-
proach and computes samples by sending rays between nodes as
they traverse the distributed volume. After the rays have sampled
the volume, the computed samples are composited in order to create
the final image. This method is inefficient due to its huge memory
footprint and inter-node communication requirements. The Ray-
Casting:SLIVR renderer implements a typical sort-last rendering

Wu et al. / Vislt-OSPRay: Toward an Exascale Volume Visualization System

pipeline using parallel direct send [Hsu93]. RayCasting:SLIVR has
been found to be faster than RayCasting: Compositing, as it requires
significantly less inter-node communication; however, it is still in-
efficient on recent many-core processors in terms of memory foot-
print and overall performance.

4. Implementation

To provide context for our implementation within Vislt, we first de-
scribe the Vislt rendering pipeline (Section 4.1) and then our use of
PIDX for fast I/O (Section 4.2). Finally, we present the details of
our OSPRay integration (Section 4.3) and our approach to improv-
ing compositing performance by better utilizing IceT in a hybrid-
parallel renderer (Section 4.4).

4.1. The Vislt Distributed Rendering Pipeline

Vislt employs a client-server architecture for distributed visual-
ization (Figure 3), where user instructions and data processing and
rendering states are gathered by components running on the user’s
workstation and sent to the Vislt Component Launcher (VCL)
on a remote server. Data processing and scalable rendering tasks
are executed by multiple parallel compute engines (engine_par)
launched by the VCL on the compute nodes. The compute engines
communicate with each other via MPI. The Analysis and Visual-
ization Toolkit (AVT) is used by Vislt to set up the data process-
ing flow through an analysis pipeline (Figure 4). A typical AVT
pipeline consists of a data source, e.g., a file reader; several fil-
ters, which transform and process the data; and finally, a data sink,
e.g., a renderer to display the result. A volume renderer can be
implemented in Vislt as either a sink component, which directly
displays pixels to the screen (hardware-accelerated methods), or

avtGeneric
Database

avtOrininating
Source

Compute Meta Data

Vislt Overhead

>
[Contract| < & Load
avtFilter | Balancer QOSPRay Overhead
| Contract | < b
avtFilter |

OSPRay Rendering

| Contract | {/L
f:,] avtFilter

| Contract | I

Image Compositing

avtTerminating
Sink

Figure 4: Left: the AVT data processing pipeline in Vislt. Right: the
six operations performed in the avtRayTracer filter. In “Com-
pute Meta Data”, coordinates are transformed to camera space.
They are then passed to Vislt and OSPRay in “Vislt Overhead”
and “OSPRay Overhead” stages. In the “OSPRay Rendering” and
“Image Compositing” stages, the volume is rendered, and the im-
age is returned to Vislt. Any other operations are classified as “Vislt
Other Overhead”.

a filter component, which transforms the 3D grid into an image
(scalable rendering methods). Only the latter approach allows for
data-distributed rendering, and we therefore implement our volume
renderer as a filter.

4.2, Data I/0 via PIDX

Post-processing visualization tasks are generally performed using
fewer resources (e.g., memory and cores) compared to the simu-
lation that produced the data. Therefore, post-processing visual-
ization requires readers to be able to fetch large amounts of data
efficiently in very different scenarios. For example, many data for-
mats (e.g., BOV or Uintah’s UDA) store data in bricks or patches,
which turn into many small files on disk. As a result, the reader
must execute numerous small accesses to the filesystem, which
negatively impacts I/O performance. The PIDX library [KVC*11]
instead allows for full control over the number and size of output
files, through a two-phase 1/O process, where data is aggregated
onto a subset of the cores before being saved to the disk. The Uin-
tah Computational Framework utilizes PIDX for checkpoint-restart
due to the superior I/O performance over previous I/O methods.
Moreover, the library is able to quickly fetch arbitrary blocks of
data, independent of the initial domain decomposition used to write
the file.

These features enable visualization tasks to control the amount
of data assigned to each processor or node. For example, volume
rendering tasks are no longer required to render volume bricks us-
ing the bricking selected by the simulation, and can instead load the
data with a more favorable distribution for rendering. In our PIDX
reader for Vislt, we compute a domain decomposition that assigns
one convex brick of data to each node, where the bricks divide the
domain as uniformly as possible. This ability to change the domain
decomposition enables us to adopt a hybrid-parallel rendering ap-
proach in the style of TOD-Tree [GPC*15] to better utilize multi-
and many- core CPUs. For example, if we load a data using 128
Intel® Xeon Phi™ processors, we need to launch only 128 program
instances and divide the data into 128 domains, while the program
can still utilize all 8192 cores via multi-threading.

4.3. Rendering via OSPRay

Our OSPRay rendering filter maps features provided by the Vislt
RayCasting:Compositing renderer to OSPRay, allowing users fa-
miliar with the previous renderer to easily produce the same im-
ages, albeit at much higher framerates. To select our renderer, users
can simply choose the RayCasting: OSPRay rendering option in the
GUI. We now describe our mapping from Vislt’s rendering param-
eters and data representation to OSPRay’s.

Camera Matrix Transformations

Vislt defines its camera transforms following OpenGL conventions;
however, OSPRay is a ray tracer and generates primary rays differ-
ently. Although the methods for specifying the camera transform
differ, there is an easy mapping between most parameters of VisIt’s
camera to OSPRay’s. This mapping can be implemented in Vislt di-
rectly, or by extending OSPRay’s camera. We chose to implement
this mapping in VisIt. In our implementation, we found only three

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

Wu et al. / Vislt-OSPRay: Toward an Exascale Volume Visualization System

cell {zonal) ////\ point {(nodal) /27\
A B in N

olo
olo
o i o
olo
X[O] 1 X[1] KIN-1]

X(o1 1) \X[Nlji

[l Replication of data Ain B
[Replication of data Bin A

o 0 0 ©
o 0 0 ©

Figure 5: Volume and ghost region representation in Vislt. X [1]
indicate the cell boundaries for zonal data and point positions for
nodal data. If two bricks share a boundary (e.g., A and B), there
will be a layer of replicated voxels on each node at the boundary,
to allow for correct interpolation. To hide the ghost voxels on each
brick, Vislt-OSPRay applies clipping planes at the cell boundaries
for zonal data and at the mid-point between adjacent points for
nodal data.

parameters that required special treatment to produce an equivalent
rendering.

In Vislt, the imagePan and imageZoom parameters define
screen-space translation and zoom operations, which are essential
for user-interactions. To match the effect of these parameters in our
OSPRay renderer, we map them to the imageStart and im-—
ageEnd parameters of OSPRay’s camera, which are used to de-
scribe the region of the camera sensor being rendered. Vislt also
allows users to perform arbitrary scaling along the XYZ axes us-
ing the axis3DScales parameter. This operation is equivalent
to scaling the volume grid cell size along different axes. We map
the scaling applied to the gridSpacing parameter on the vol-
ume in OSPRay, which similarly allows users to specify a scaling
to apply to the volume grid.

Volume Representation

VisIt uses VTK [SLMO04] to represent various datasets used in sci-
entific visualization. The vt kRectilinearGrid is used to rep-
resent regular 3D grids. Depending on whether the volume has
data at every point, volumes are classified as either nodal or zonal.
Zonal data (Figure 5 left) uses the bottom-left corner of the cell
to represent the voxel position. Nodal data (Figure 5 right) uses
the node position as the voxel position. In order to achieve data-
distributed rendering, we extended OSPRay with a module, mod-
ule_visit. Although a data-distributed rendering mode has recently
been included in the official OSPRay, it was not available when we
started our integration, and therefore we kept our implementation,
which is still compliant with the current OSPRay system.

To preserve the appearance of a single connected volume
in data-distributed rendering, ghost voxels must be introduced
along shared boundaries for correct interpolation across the
boundary [Hsu93]. Although Vislt already manages the ghost
voxel exchange between ranks (blue voxels for A, red voxels
for B, Figure 5), OSPRay’s volume types have no concept of
ghost voxels, and treat them as regular voxels owned by the
node, resulting in them being incorrectly rendered. To hide the

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

v/ /

T
' i
: Advance Ray :
: 1
1 1
1 1
1 1
G ! !
u 1 1
! i
end
8} : :
Lstart ' !
1 1
1 1
1 1
1 1
1 1
1 1
G ' i
| H 1
Lend ! H
1 1
1 1
' / i
/ / i Advance Ray !
1
1 1
@ @ Inconsistent Samples [S |
@ Consistent Samples
a) b)

Figure 6: a) Differences between inconsistent sampling and con-
sistent sampling. For the ray on the left, blending the red and green
samples together will be incorrect, as the last red sample U®"® and
the first green sample L' are too close to each other. b) In VisIt-
OSPRay, different bricks have an identical global volume bounding
box, and rays are adjusted in order to produce correct samples.

A

Figure 7: The rendering artifact produced by inconsistent sampling
between bricks. A) The CT-head dataset rendered by Vislt-OSPRay
using consistent sampling between bricks; B) the same data ren-
dered using OSPRay’s built-in volume type, resulting in disconti-
nuities at the brick boundaries.

ghost voxels we can use the volumeClippingBoxLower and
volumeClippingBoxUpper parameters of OSPRay’s volume
types to clip them, while still leaving them available in the data
for correct interpolation between boundaries. The dashed lines in
Figure 5 show where the clipping planes are placed.

It is well known that having consistent sampling steps across
bricks is important to avoid artifacts in distributed volume render-
ing [Hsu93]. Consider a renderer running on two ranks, R, and R;,
as shown in Figure 6a. The volume is divided into two bricks, G,
and G;, with one brick assigned to each rank. If both R, and R;
sample their brick starting from the ray’s intersection with their lo-
cal bounds, there will be a different sampling step size between the
last sample of R,, and the first sample of R; (red and green samples,
Figure 6a). The final composited color produced by these samples
will be incorrect when compared to sampling a single continuous

Wu et al. / Vislt-OSPRay: Toward an Exascale Volume Visualization System

volume (blue samples, Figure 6a), resulting in visible artifacts (Fig-
ure 7).

To ensure consistent sampling between different bricks, we
extended OSPRay with a new OSPRay volume type, the
visit_shared_structured_volume. This new volume
solves the sampling consistency issue by using the concept of
a “global volume”. Specifically, while each renderer holds data
for just its local brick, the volume bounds reported to OSPRay’s
renderer are those of the global volume. When OSPRay computes
a ray intersection with the volume, it will intersect the ray with the
full volume bounds on each node and begin sampling at the same
first hit point (Figure 6b). To compute samples, OSPRay calls into
our sample method, which will skip the ray forward to the first
sample point within the local brick, sample the brick, and then find
the ray’s exit point from the global volume. This method requires
no additional communication between nodes, because each node
must be aware of only the global dimensions, which are available
as meta-data in the volume file. Table 1 shows how to set parame-
ters for this new volume type.

Transfer Functions

OSPRay currently supports only 1D piecewise-linear transfer func-
tions; however, Vislt provides multiple options, including Gaussian
transfer functions. To map Vislt’s transfer function to OSPRay, we
resample the transfer function to a 1K element array to produce a
piecewise-linear approximation. Furthermore, we removed Vislt’s
hard-coded opacity correction term, 1 — (1 — Oz)fvx’, which it uses
to account for the sampling rate, because this correction is handled
automatically by OSPRay.

Combining OSPRay and VisIt Renderings

One of the advantages of general purpose visualization software
is that it allows users to combine multiple visualization modali-
ties, e.g., different geometries such as streamlines or isosufaces and
volumes into one image. To support combining geometry rendered
by Vislt with distributed volume data rendered with OSPRay, we
take advantage of the the maxDepthTexture parameter in the
OSPRay SciVis Renderer. This parameter allows us to pass a pre-
viously produced depth image (e.g., from OpenGL) to OSPRay,
which will be used to terminate rays correctly against the previ-
ously rendered geometry. Figure 8 shows two examples of combin-
ing our OSPRay volume rendering with VisIt-rendered geometry.

4.4. Parallel Image Compositing with IceT

It has been shown that in data-parallel rendering at large core
counts, the final image compositing step becomes the main bottle-
neck [GPC*15]. This bottleneck can be addressed by moving to a
hybrid-parallel model [GPC*15], where compositing is done within
a node using threads and shared memory, and between nodes with
MPIL. In our renderer, we partially adopt the TOD-Tree algorithm
of Grosset et al. [GPC*15]. Specifically, we employ TOD-Tree’s
approach for multi-threading for intra-node compositing, and we
extend this approach to leverage vectorization.

In the case that each node contains only one brick, and thus
no intra-node compositing is needed, we use IceT [MKPH11] for

DB: MRBrainTum Qe
Cycle: 1 Timd

user: qwu
Tue Mar 6 11:35:07 2018

Figure 8: Displaying volumes with geometry rendered by Vislt.
Left: the MRI Brain Tumor dataset visualized using a volume, a
slice, and an isosurface. Right: The Fuel dataset visualized with a
volume and isosurface.

inter-node compositing. IceT provides a wide range of composit-
ing algorithms, such as reduce, radix-k, binary-swap, and tree-like
compositing. In our experiments (Section 5), we found that the
cluster network topology can have a significant influence on com-
positing performance. On a fat-tree topology network, we found
the tree-like compositing approach outperformed the other algo-
rithms available in IceT. Since the fat-tree topology is relatively
common, we selected the tree-like compositing approach as the de-
fault method.

5. Results

We evaluated three key aspects of our Vislt-OSPRay integration:
the scalability of the OSPRay rendering component and improved
image compositing (Section 5.2); the overall performance improve-
ment achieved in Visit as a whole (Section 5.3); and finally, the
memory consumption of VisIt-OSPRay relative to other renderers
in Vislt (Section 5.4).

The benchmarks were performed on the Stampede2 super-
computer at the Texas Advanced Computing Center (TACC) and
the Theta supercomputer at Argonne National Laboratory (ANL).
Stampede?2 uses an Inte]® Omni-Path network with a fat-tree topol-
ogy employing six core switches; it has 4,200 Intel® Xeon Phi™
7250 (KNL) processor-based nodes and 1,736 Intel® Xeon® Plat-
inum 8160 (Skylake) processor-based nodes. Each KNL node has
96 GB RAM and 68 cores. Each Skylake node has 192 GB RAM
and 48 cores over two sockets. Theta is a Cray XC40 machine
with an Aries interconnect in a Dragonfly configuration. Theta is
equipped with 4,392 KNL 7230 nodes, each with 64 cores and a
96 GB RAM. We ran additional benchmarks on two Intel® Xeon®
ES5 (Haswell) processor-based clusters: Cooley and Kepler. Cooley
is the visualization cluster at ANL, with 126 twelve-core nodes.
Kepler is located at the Scientific Computing and Imaging Institute
(SCI) at the University of Utah and has 32 sixteen-core nodes.

We selected different compilers and libraries on Stampede2 and
Theta. On Stampede2, we used the Intel® compiler version 17 and
Intel® MPI, and on Theta we used GCC 5.4 and Cray MPICH,
due to some issues encountered when compiling with the Intel
compiler. As OSPRay uses threads internally for rendering, we
ran a single rendering process per node to achieve the best ren-

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

Wu et al. / Vislt-OSPRay: Toward an Exascale Volume Visualization System

Type Name Default Description
bool useGridAccelerator Whether the empty space skipping grid will be built
vec3 volumeGlobalBoundingBoxLower disabled Lower coordinate of the global volume
vec3 volumeGlobalBoundingBoxUpper disabled Upper coordinate of the global volume

Table 1: Additional parameters for the visit_shared_structured_volume.

dering performance. However, for a fair comparison against previ-
ous renderers in Vislt that do not support multi-threading, we ran
one Vislt renderer per core on each node when benchmarking these
renderers. On Stampede?2, due to memory limitations on the KNL
nodes, we could use only 64 of the 68 cores when benchmarking
these renderers.

5.1. Dataset

We evaluated Vislt-OSPRay on datasets ranging in size from small
(e.g., the supernova simulation [BMO7] and aneurysm datasets,
Figure lc,d), medium (e.g., the Richtmyer-Meshkov Instabil-
ity [CDD*02] Figure 1b), large (e.g., the coal-boiler Figure 1a),
to extremely large (e.g., the DNS [MKM99] Figure le). Our
project was initially motivated by the challenges encountered by the
University of Utah’s Carbon-Capture Multidisciplinary Simulation
Center (CCMSC) when trying to visualize their coal-boiler dataset.
The coal-boiler consists of 1811 timesteps, each with 50 fields at a
resolution of 1466 x 648 x 578, modeling the evolution of an ultra
super-critical coal boiler powerplant. Due to the dataset’s massive
size (~179 TB total), the CCMSC has used Vislt extensively for
visualization and analysis tasks.

While the coal-boiler is large in aggregate, each individual
field is not. To evaluate our system on an extremely large sin-
gle volume, we performed additional benchmarks on the DNS
dataset [MKM99]. The DNS, produced by the Institute for Compu-
tational Engineering and Science (ICES) at the University of Texas-
Austin, is a single 10240 x 7680 x 1536 double-precision volume
(966 GB) simulating turbulent flows.

For strong scaling benchmarks, volumes were rendered to a
1024 x 933 framebuffer. For weak scaling runs, volumes were ren-
dered to a 1024+/N x 1024+/N framebuffer, where N represents the
number of nodes. We measured rendering performance by taking
the average framerate while rotating the camera along the X and Y
axes. The first frame was not included for all cases, because it in-
cludes executing additional setup overhead in Vislt, which usually
takes two to three times longer than subsequent frames.

5.2. Scalability

We evaluated the strong scaling of VisIt-OSPRay’s core ren-
dering component by measuring the average time spent in
ospRenderFrame (Figure 9). We found that OSPRay performed
very well on strong scaling and can effectively utilize recent multi-
and many-core processors, such as the Intel® Xeon® processors
(Skylake) on Stampede2 and the Intel® Xeon Phi"™ processors
(KNL) on Stampede2 and Theta, for both medium (the coal-boiler)
and large (the DNS) datasets.

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

~#-Coal-Boiler: Cooley (ANL) w/ 12 cores/node
| -®-Coal-Boiler: Kepler (SCI) w/ 16 cores/node
10 |_g-Coal-Boiler: Stampede2 (TACC) KNL w/ 68 cores/node
-A-Coal-Boiler: Stampede2 (TACC) SKX w/ 48 cores/node e
Coal-Boiler: Theta (ANL) w/ 64 cores/node -
102| > DNS: Stampede2 (TACC) KNL w/ 68 coresinode

]

o

&
10°

64 128 256

16 32
Number of Nodes

Figure 9: Strong scaling of our OSPRay rendering component on
different machines. The dashed lines indicate the ideal strong scal-
ing trend.

10

—4-No IceT (Parallel Direct Send)
—=-IceT Reduce

IceT Tree _.zaed
10% | |4-IceT Radix-K

—A-IceT BSWAP

2 4 8 16 32 64 128 256
Number of Nodes

—4-No IceT (Parallel Direct Send)
—#-|ceT Reduce
IceT Tree
10% | | 4-IceT Radix-K
4-IceT BSWAP

8 16 32 64 128 256 512
Number of Nodes

Figure 10: Strong scaling on the coal-boiler dataset using image
compositing algorithms available in IceT and Vislt. The bench-
marks were run on Stampede2 KNLs (top) and Theta (bottom).

We also studied the impact of different compositing strategies
on the scalability of Vislt-OSPRay’s image compositing compo-
nent. We compared four compositing algorithms available in IceT:
reduce, binary-tree, radix-k, and binary swap; and the parallel
direct send algorithm in Vislt’s RayCasting:SLIVR renderer on
Stampede?2 and Theta (Figure 10). Although the rendering com-
ponent discussed above is independent across nodes and would be
expected to scale well, image compositing requires communica-

Wu et al. / Vislt-OSPRay: Toward an Exascale Volume Visualization System

4 Coal-Boiler: RayCasti it KNL)
—s-Coal-Boiler: RayCasting:Compositing (Theta)
, |- Coal-Boiler: RayCasting:SLIVR (Stampede2 KNL)
10% | Coal-Boiler: OSPRay (Stampede2 KNL)
-A-Coal-Boiler: OSPRay (Theta)
DNS: OSPRay (Stampede2 KNL)

10°

FPS

16 32 128 256 512
Number of Nodes

Figure 11: Strong scaling of the overall framerate of Vislt-OSPRay
compared to the RayCasting:Compositing and RayCasting:SLIVR
renderers. OSPRay is run with multiple threads and one process
per node; the other renderers are run with 64 processes on each
node. Dashed lines indicate ideal strong scaling. We also included
the strong scaling result on the DNS dataset (cyan).

60
iRayCasting:Compositing (Theta)
MiRayCasting:C iti KNL)
50 [osPRay (Theta) -
M osPRay (Stampede2 KNL) 1.9

40 [ITheoretical (OSPRay Rendering + Compositing)
» g;
& 30
2.7
20 6.0
19
10 15 8 12,0 34.0
2.9 12.3| 9.3
2d&d 6.0 7.4 17.9
0
4 128

32 6
Number of Nodes

Fld
S

256

Figure 12: The overall speed-up we achieved with Vislt-OSPRay
(green, purple) and the theoretical framerate we could reach (yel-
low) if the rest of the software pipeline was perfectly optimized. The
numbers on bars indicate their speed-ups and the colors indicate
the renderers being compared. For example, the green numbers
on the yellow bars represent the speed-up of Vislt-OSPRay’s the-
oretical performance in comparison with the actual performance
we measured on Theta. Although our integration of OSPRay has
yielded significant improvement, additional overheads in Vislt re-
main that impede performance. The coal-boiler dataset was used
for these benchmarks.

tion and synchronization between nodes, as it amounts to a global
reduction operation.

On Stampede?2 (Figure 10 top), we observed that when running
on fewer than 28 nodes, the number of nodes connected by a leaf
switch, the compositing strategies all performed similarly. At 32
nodes, we found a decrease in performance with most algorithms,
and as we scaled further to 256 nodes, we found that all the meth-
ods besides IceT’s tree algorithm perform worse than at 16 nodes.
Interestingly, we observed the worst performance for most methods
to occur at 64 nodes, which we believe is associated with the net-
work configuration of Stampede2. However, we have not run more
detailed experiments at this time to investigate the issue.

On Theta, however, we found unsatisfying strong scaling for all
the image compositing strategies tested. The difference in scala-
bility found when comparing Stampede2 and Theta is likely at-
tributable to the different network topologies and job schedul-

100

@
=]

3
S

It Other Overhead
|Vislt Filter Overhead
islt Compositing
(%) llCompute Meta Data
0.167s IlloSPRay Overhead
[OSPRay Rendering

Percentage (%)
»
3

N
S

n2p1 ndp1 n8p1 n16p1 n32p1 n64p1 n128p1 n256p1
(n<X>p<Y>) X nodes w/ Y processes per node

Figure 13: The performance profile of Vislt-OSPRay on
Stampede2 KNL nodes using the coal-boiler dataset. We find that
the time spent rendering with OSPRay rendering (green) and com-
positing with IceT (orange) together takes only 7% of the total
frame time at 256 nodes.

0.3

T

Vislt Other Overhead
| ~%-Vislt Filter Overhead | |
0.25 -®-Visit Compositing
—*-Compute Meta Data
-A-OSPRay Overhead [
~v-OSPRay Rendering
[»-Overall

e
N
T

Seconds
°
e o
S oo
T T

=4

o

&
T

2 4 8 16 32 64 128
Number of Nodes

Figure 14: Strong scaling using the coal-boiler on Stampede?2 Sky-
lake nodes broken down by stage. We find that “Vislt Other Over-
head” does not scale with the rest of the rendering pipeline.

ing strategies employed. Stampede2’s network uses a typical fat-
tree topology, whereas Theta uses a Dragonfly topology. These
topologies can have strong effects on communication between
nodes, depending on locality and communication patterns. More-
over, Stampede2 uses SLURM to schedule jobs (which sup-
ports topology-aware resource allocation), while Theta uses Cobalt
(which employs a random task-to-core mapping by default). The
random mapping used by Cobalt can result in poor communication
locality for communication-heavy tasks like image compositing.

5.3. Overall Performance

To evaluate how much performance improvement our integration of
OSPRay can bring to VisIt’s rendering system as a whole, we also
measured strong scaling of the average framerate achieved in Vislt
when using our renderer (Figure 11). The overall strong scaling
trend of our OSPRay integration was similar to what we observed
in Figure 10, and we achieved up to an order of magnitude speed-
up (6-34 times) compared to Vislt’s current renderers. However, we
also observed that the absolute framerates achieved with our inte-
gration are lower than what we would expect, given the framerates
observed in Figure 10.

When comparing just the rendering and compositing time (i.e.,
our theoretically achievable framerate) against the actual framerate
achieved in Vislt (Figure 12), we found a significant performance
bottleneck elsewhere in Vislt’s rendering pipeline. To determine the

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

Wu et al. / Vislt-OSPRay: Toward an Exascale Volume Visualization System

Vislt Other Overhead
30 H~™ Vislt Filter Overhead —
- Vislt Compositing
25 [|-*-Compute Meta Data i
—A-OSPRay Overhead
201 ~¥-OSPRay Rendering
[»—Overall

Seconds

128

Number of Nodes

Figure 15: Weak scaling using the coal-boiler on Theta broken
down by stage. We find that “Vislt Other Overhead” and “Vislt
Filter Overhead” exhibit poor weak scaling.

source of this bottleneck, we measured the percentage of time spent
in each stage of the rendering pipeline (Figure 13). We also broke
down the absolute timing on strong (Stampede?2) and weak (Theta)
scaling benchmarks (Figures 14 and 15).

In Figure 13, we found that due to the significant speed-ups we
achieved using OSPRay and IceT, the rendering and image com-
positing stages together—usually considered the major challenges
for distributed rendering—accounted for only 7% of the total time
in the entire rendering pipeline at 256 nodes. At lower core counts
we observe a similar trend, where other software overhead in VisIt
starts to dominate the rendering time at eight nodes and up. When
comparing the strong and weak scaling of the individual compo-
nents (Figures 14 and 15) on an absolute scale, we observed that, al-
though the OSPRay rendering and image compositing components
scaled relatively well, other stages such as “VisIt Other Overhead”
(which sets system parameters and blends the rendered image to
the annotated framebuffer on the master rank) did not. At higher
node counts, these overheads dominated the overall render time,
impacting performance.

5.4. Memory Efficiency

Finally, we examined the impact of our OSPRay integration and
migration to hybrid-parallel execution on memory consumption.
When rendering large datasets, the additional memory consumed

—-RayCasting:Compositing
RayCasting:SLIVR

\V\.\‘ -*-0OSPRay

<

= GB/node .

2

107

16
Number of Nodes

Figure 16: Comparison of the memory footprint when rendering
the coal-boiler of Vislt’s RayCasting:Compositing and RayCast-
ing:SLIVR renderers with our OSPRay renderer on Stampede?2
KNL nodes. We find that moving to the hybrid-parallel model of
OSPRay comes with a significant reduction in memory use.

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

by the renderer and other system components impacts how much
data can fit on a node, and thus how many nodes users need to
render their data. We profiled the engine component, which is re-
sponsible for performing the data loading and rendering tasks, us-
ing the Linux tool /usr/bin/time. We measured the maximum
resident memory size required by the program and found that the
previous MPI-only renderers required one to two orders of magni-
tude more memory than our hybrid-parallel OSPRay renderer (Fig-
ure 16).

6. Conclusion

In this paper, we have proposed VisIt-OSPRay, an extension of the
data-distributed rendering framework in Vislt that aims at moving
Vislt further along the path to exascale by significantly improving
both absolute performance and scalability on modern Intel® Xeon®
and Intel® Xeon Phi™ architectures. Our framework focuses on a
hybrid-parallel model that combines multi-threaded rendering in
OSPRay with data-parallel rendering in Vislt, with various opti-
mizations such as faster parallel compositing via IceT and more
efficient parallel I/O using PIDX.

By leveraging hybrid parallelism, our framework consumes up
to an order of magnitude less memory than previous renderers in
Vislt; and the improvements in parallel rendering allowed us to
scale to up to 32,768 cores across 512 KNL nodes. Combined with
the improved single-node rendering performance using OSPRay,
we have significantly improved the overall performance and scala-
bility of rendering in Vislt, allowing us to interactively render mas-
sive datasets such as the ~179TB in aggregate coal-boiler and the
966 GB DNS.

Perhaps most importantly, our optimizations to VisIt’s parallel
rendering pipeline have so significantly reduced the cost of render-
ing, which was once by far the single dominating bottleneck, that
rendering is now—at least at scale—merely one of many differ-
ent costs, with the “real” bottlenecks remaining to be solved for
exascale occurring elsewhere in VisIt’s pipeline.

7. Future Work

Although we have found that IceT’s tree-like compositing strategy
can improve image compositing on fat-tree network topology sys-
tems, developing a general method to adaptively optimize IceT’s
compositing strategies remains challenging. In addition, rather than
using IceT for compositing, it would also be interesting to evalu-
ate OSPRay’s own data-parallel rendering. Although it has never
been tested at such scales, its ability to further interleave render-
ing and compositing might improve scalability even further. More-
over, having a much faster rendering pipeline is also interesting
for in situ processing. As computational simulations are moving
to exascale, in situ visualization will become increasingly impor-
tant, and a closer integration between Vislt-OSPRay and Vislt’s
LibSim [WFM11] library would be valuable.

Finally, it is imperative to start addressing the non-rendering bot-
tlenecks in VisIt which remain in the way of reaching the perfor-
mance and efficiency needed for exascale visualization workloads.

Wu et al. / Vislt-OSPRay: Toward an Exascale Volume Visualization System

It will be interesting to learn how hard—or easy—it will be to par-
allelize these remaining sequential components to enable exascale
visualization and analysis.

Acknowledgements

This research was supported by the DOE, NNSA, Award DE-
NA0002375: (PSAAP) Carbon-Capture Multidisciplinary Simu-
lation Center, the DOE SciDAC Institute of Scalable Data Manage-
ment Analysis and Visualization DOE DE-SC0007446, NSF ACI-
1339881, and NSF IIS-1162013. Additional support comes from
the Intel Parallel Computing Centers program.

The authors acknowledge the Texas Advanced Computing Center
at UT-Austin, and the Argonne Leadership Computing Facility, a
DOE Office of Science User Facility supported under Contract DE-
ACO02-06CH11357, for providing HPC resources.

References

[AGLO5] AHRENS J. P., GEVECI B., LAW C.: Paraview: An End-User
Tool for Large Data Visualization. In Visualization Handbook. 2005. 1

[BFH12] BROWNLEE C., FOGAL T., HANSEN C. D.: GLuRay: Ray
Tracing in Scientific Visualization Applications using OpenGL Intercep-
tion. In Eurographics Symposium on Parallel Graphics and Visualization
(2012). 3

[BMO7] BLONDIN J. M., MEZZACAPPA A.: Pulsar Spins from an Insta-
bility in the Accretion Shock of Supernovae. Nature (2007). 1,7

[BPL*12] BROWNLEE C., PATCHETT J., Lo L.-T., DEMARLE D.,
MITCHELL C., AHRENS J., HANSEN C. D.: A Study of Ray Trac-
ing Large-scale Scientific Data in Parallel Visualization Applications. In
Eurographics Symposium on Parallel Graphics and Visualization (2012).
3

[BSPO6] BIGLER J., STEPHENS A., PARKER S. G.: Design for Paral-
lel Interactive Ray Tracing Systems. [EEE Symposium Interactive Ray
Tracing (2006). 3

[CBW*12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH J.,
AHERN S., PUGMIRE D., BIAGAS K., MILLER M., HARRISON C.,
WEBER G. H., KRISHNAN H., FOGAL T., SANDERSON A., GARTH
C., BETHEL E. W., CAMP D., RUBEL O., DURANT M., FAVRE J.,
NAVRATIL P.: Vislt: An End-User Tool for Visualizing and Analyzing
Very Large Data. High Performance Visualization (2012). 1

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated Volume Render-
ing and Tomographic Reconstruction using Texture Mapping Hardware.
In IEEE Symposium on Volume Visualization (1994). 2

[CCM18] CCMSC, UNIVERSITY OF UTAH: The Carbon-
Capture Multidisciplinary =~ Simulation Center, 2018. URL:
https://goo.gl/YastC6. 1,2

[CDD*02] COHEN R. H., DANNEVIK W. P., DIMITS A. M., ELIASON
D. E., MIRIN A. A., ZHOU Y., PORTER D. H., WOODWARD P. R.:
Three-Dimensional Simulation of a Richtmyer-Meshkov Instability with
a Two-Scale Initial Perturbation. Physics of Fluids (2002). 1,7

[CDM06] CHILDS H., DUCHAINEAU M., MA K.-L.: A Scalable, Hy-
brid Scheme for Volume Rendering Massive Data Sets. Eurographics
Symposium on Parallel Graphics and Visualization (2006). 3

[CN93] CuLLIP T.J., NEUMANN U.: Accelerating Volume Reconstruc-
tion with 3D Texture Hardware. Tech. rep., University of North Carolina
at Chapel Hill, 1993. 2, 3

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Volume Ren-
dering. Proceedings of the Annual Conference on Computer Graphics
and Interactive Techniques (1988). 2

[EBA12] EILEMANN S., BILGILI A., ABDELLAH M.: Parallel Render-
ing on Hybrid Multi-GPU Clusters. In Eurographics Symposium on Par-
allel Graphics and Visualization (2012). 1

[FCS*10] FoGAL T., CHILDS H., SHANKAR S., KRUGER J., BERG-
ERON R. D., HATCHER P.: Large Data Visualization on Distributed
Memory Multi-GPU Clusters. In High Performance Graphics (2010). 3

[GPC*15] GROSSET A. V. P., PRASAD M., CHRISTENSEN C., KNOLL
A., HANSEN C. D.: TOD-Tree: Task-Overlapped Direct Send Tree Im-
age Compositing for Hybrid MPI Parallelism. Eurographics Symposium
on Parallel Graphics and Visualization (2015). 1, 3,4, 6

[HBC12] HowIisoN M., BETHEL E. W., CHILDS H.: Hybrid Paral-
lelism for Volume Rendering on Large-, Multi-, and Many-Core Sys-
tems. [EEE Transactions on Visualization Computer Graphics (2012).
1,2

[Hot18] HOTA A.: Building VisIt+OSPRay/SWR, 2018. URL:
https://goo.gl/45uRwsS. 3

[Hsu93] Hsu M. W.: Segmented Ray-Casting for Data Parallel Volume
Rendering. IEEE Parallel Rendering Symposium (1993). 1,2, 3,5

[KTW*11] KNOLL A., THELEN S., WALD I., HANSEN C. D., HAGEN
H., PAPKA M. E.: Full-Resolution Interactive CPU Volume Rendering
with Coherent BVH Traversal. In IEEE Pacific Visualization Symposium
(2011). 2

[Kui91] KUUK A. A.: Advances in Computer Graphics Hardware III.
1991. 2

[KVC*11] KUMAR S., VISHWANATH V., CARNS P., SUMMA B.,
SCORZELLI G., PAscucct V., Ross R., CHEN J., KoLLA H., GROUT
R.: PIDX: Efficient Parallel I/O for Multi-resolution Multi-dimensional
Scientific Datasets. In IEEE Conference on Cluster Computing (2011).
2,4

[KW03] KRUGER J., WESTERMANN R.: Acceleration Techniques for
GPU-based Volume Rendering. In IEEE Visualization (2003). 2

[KWN*13] KNOLL A., WALD I., NAVRATIL P. A., PAPKA M. E.,
GAITHER K. P.: Ray Tracing and Volume Rendering Large Molecular
Data on Multi-core and Many-core Architectures. International Work-
shop on Ultrascale Visualization (2013). 1

[Lev88] LEvOY M.: Display of Surfaces from Volume Data. IEEE Com-
puter Graphics Applications (1988). 2

[Levo0] LEvOY M.: Efficient Ray Tracing of Volume Data. ACM Trans-
actions on Graphics (1990). 2

[MEFC94] MOLNAR S., ELLSWORTH D., FucHs H., Cox M.: A Sort-
ing Classification of Parallel Rendering. IEEE Computer Graphics and
Applications (1994). 2

[MKM99] MOSER R. D., KiM J., MANSOUR N. N.: Direct Numerical
Simulation of Turbulent Channel Flow Up to Re; = 5200. Physics of
Fluids (1999). 1,7

[MKPH11] MORELAND K., KENDALL W., PETERKA T., HUANG J.:
An Image Compositing Solution at Scale. In International Conference
for High Performance Computing, Networking, Storage and Analysis
(2011). 2,6

[MPHK93] MAK. L., PAINTER]J. S., HANSEN C. D., KROGH M. F.: A
Data Distributed, Parallel Algorithm for Ray-Traced Volume Rendering.
In IEEE Symposium on Parallel rendering (1993). 2

[MRH10] MENSMANN J., ROPINSKI T., HINRICHS K. H.: An Ad-
vanced Volume Raycasting Technique using GPU Stream Processing.
International Conference on Computer Graphics Theory and Applica-
tions (2010). 2

[PGHO6] PARKER S., GUILKEY J., HARMAN T.: A Component-Based
Parallel Infrastructure for the Simulation of Fluid—Structure Interaction.
Engineering with Computers 22, 3-4 (2006). 2

[PGR*09] PETERKA T., GOODELL D., Ross R., SHEN H.-W.,
THAKUR R.: A Configurable Algorithm for Parallel Image-Compositing
Applications. In International Conference for High Performance Com-
puting, Networking, Storage and Analysis (2009). 2

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

https://goo.gl/YastC6
https://goo.gl/45uRwS

Wu et al. / Vislt-OSPRay: Toward an Exascale Volume Visualization System

[PM12] PHARR M., MARK W. R.: ISPC: A SPMD Compiler for High-
Performance CPU Programming. In Innovative Parallel Computing (In-
Par) (2012). 2

[RWCB15] RATHKE B., WALD I., CHIU K., BROWNLEE C.: SIMD
Parallel Ray Tracing of Homogeneous Polyhedral Grids. Eurographics
Symposium on Parallel Graphics and Visualization (2015). 2

[Sab88] SABELLA P.: A Rendering Algorithm for Visualizing 3D Scalar
Fields. ACM SIGGRAPH Computer Graphics (1988). 2

[SLM04] SCHROEDER W. J., LORENSEN B., MARTIN K.: The Visual-
ization Toolkit: An Object-oriented Approach to 3D Graphics. 2004. 3,
5

[UAB*17] USHER W., AMSTUTZ J., BROWNLEE C., KNOLL A., WALD
I.: Progressive CPU Volume Rendering with Sample Accumulation. In
Eurographics Symposium on Parallel Graphics and Visualization (2017).
2

[VSW*17] VIERJAHN T., SCHNORR A., WEYERS B., DENKER D.,
WALD 1., GARTH C., KUHLEN T. W., HENTSCHEL B.: Interactive
Exploration of Dissipation Element Geometry. In Eurographics Sympo-
sium on Parallel Graphics and Visualization (2017). 2

[Wes90] WESTOVER L.: Footprint Evaluation for Volume Rendering.
ACM SIGGRAPH (1990). 3

[WEMI11] WHITLOCK B., FAVRE J. M., MEREDITH J. S.: Parallel In
Situ Coupling of Simulation with a Fully Featured Visualization Sys-
tem. In Eurographics Conference on Parallel Graphics and Visualization
(2011). 9

[WJA*17] WALD 1., JOHNSON G. P., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GUNTHER J., NAVRATIL P.: OSPRay - A CPU
Ray Tracing Framework for Scientific Visualization. IEEE Transactions
on Visualization Computer Graphics (2017). 2

[WKJ*15] WALD I., KNOLL A., JOHNSON G. P., USHER W., PAs-
cuccl V., PAPKA M. E.: CPU Ray-Tracing Large Particle Data with
Balanced P-K-D Trees. In IEEE Scientific Visualization Conference
(2015). 2

[WWB*14] WALD I., WooP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Transactions on Graphics (2014). 2

[YCMO08] Yu H., CHAOLI WANG, MA K.-L.: Massively Parallel Vol-
ume Rendering using 2-3 Swap Image Compositing. In IEEE Interna-
tional Conference for High Performance Computing, Networking, Stor-
age, and Analysis (2008). 2

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

