
ADAPTIVE MULTIRESOLUTION TECHNIQUES

FOR I/O, DATA LAYOUT, AND

VISUALIZATION OF MASSIVE

SIMULATIONS

by

William Usher

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

May 2021

Copyright © William Usher 2021

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of William Usher

has been approved by the following supervisory committee members:

Valerio Pascucci , Chair(s)
Date Approved

Christopher R. Johnson , Member
Date Approved

Charles Hansen , Member
Date Approved

Cem Yuksel , Member
Date Approved

Ingo Wald , Member
Date Approved

by Mary Hall , Chair/Dean of

the Department/College/School of Computer Science

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

The continuing growth in computational power available on high-performance comput-

ing systems has allowed for increasingly higher fidelity simulations. As these simulations

grow in scale, the amount of data produced grows correspondingly, challenging existing

strategies for I/O and visualization. Moreover, although prior work has sought to achieve

high bandwidth I/O at scale or post hoc visualization of massive data sets, treating these

two sides of the simulation visualization pipeline independently introduces a bottleneck

between them, where data must be converted from the simulation output layout to the

layout used for visualization.

The aim of this dissertation is to address key challenges across the simulation visu-

alization pipeline to provide efficient end-to-end support for massive data sets. First,

this dissertation proposes an I/O approach for particle data that rebalances the I/O

workload on nonuniform distributions by constructing a spatial data structure, improving

I/O performance and portability. To eliminate data layout bottlenecks between I/O and

visualization, this dissertation proposes a layout for particle data that balances rendering

and attribute-query access patterns through a spatial k-d tree and fixed size bitmap indices.

The layout is constructed quickly when writing the data and requires little additional

memory to store. This dissertation proposes a number of approaches to enable visualization

of massive data sets at different scales. An asynchronous tile-based processing pipeline is

proposed for distributed full-resolution rendering that overlaps compositing and rendering

tasks to improve performance. Next, a virtual reality tool for neuron tracing in large

connectomics data is proposed. The VR tool employs an intuitive painting metaphor and a

real-time page-based data processing system to visualize large data without discomfort. To

visualize massive data in compute and memory constrained environments, a GPU parallel

isosurface extraction algorithm is proposed for block-compressed data sets. The algorithm

is built on a GPU-driven memory management and caching strategy that allows working

with compressed data sets entirely on the GPU. Finally, a simulation-oblivious approach to

data transfer for loosely coupled in situ visualization is proposed that minimizes the impact

of the visualization by offloading data restructuring from the simulation.

iv

To my wife Angela Yin,

and my parents Anne Mason and Mike Usher.

CONTENTS

ABSTRACT . iii

LIST OF TABLES . viii

CHAPTERS

1. MOTIVATION AND CONTRIBUTIONS . 1

1.1 The Simulation Visualization Pipeline . 4
1.2 Challenges in the Simulation Visualization Pipeline . 10
1.3 Contributions . 14

2. RELATED WORK . 20

2.1 Parallel I/O for Particle Data . 20
2.2 Visualization Optimized Data Layouts . 22
2.3 Post Hoc Visualization of Massive Data Sets . 34
2.4 In Situ Visualization . 44

3. ADAPTIVE I/O AND DATA LAYOUT . 55

3.1 Spatially Aware Two-Phase I/O Using an Adjustable Uniform Grid 56
3.2 Spatially Aware Two-Phase I/O Using an Aggregation Tree 62
3.3 The Binned Attribute Tree Particle Data Layout . 69
3.4 Parallel I/O Scaling Study . 75
3.5 Evaluation on Post Hoc Visualization Reads . 87
3.6 Summary . 91

4. POST HOC VISUALIZATION . 93

4.1 A Distributed FrameBuffer for Scalable Ray Tracing . 95
4.2 A Virtual Reality Visualization Tool for Neuron Tracing 120
4.3 Interactive Visualization of Terascale Data in the Browser 145
4.4 Summary . 168

5. IN SITU VISUALIZATION . 170

5.1 Accelerating In Situ Rendering of Image Databases with the Distributed
FrameBuffer . 172

5.2 Data Staging In Situ Within an Adaptive Spatially Aware Two-Phase I/O
Pipeline . 174

5.3 Low Overhead Loosely Coupled In Situ Visualization 176
5.4 Summary . 198

6. CONCLUSION AND FUTURE WORK . 201

6.1 Exciting Avenues for Future Research . 203

REFERENCES . 206

vii

LIST OF TABLES

2.1 Different bitmap index encodings for an attribute with cardinality C = 6. 31

3.1 Progressive single-thread read times and throughput on time step 4501 of the
Coal Boiler, written using 1536 ranks. 90

3.2 Progressive single-thread read times and throughput on the 2M and 8M
particle Dam Break time series. 90

4.1 Average scores (with standard deviation) and times in seconds for each tool
across the 32 DIADEM traces used for evaluation. The average speed-up over
all traces is also shown for each user. Users 1-3 are novices and 4-7 are experts.
Both novices and experts performed similarly in VR, and tended to be faster
on average. ∗User 1 miscalibrated the Z level in their NeuroLucida sessions,
resulting in much lower scores for the majority of traces. 138

4.2 Average scores (with standard deviation) and times for traces on the Cell
Bodies data set. User 6 is used as the reference. 140

4.3 Load times for the connectomics data sets using the native build of libtiff and
the WebAssembly module in Firefox and Chrome. 151

4.4 Load times for the laz files using the native build of LASlib and the WebAssem-
bly module in Firefox and Chrome. 152

4.5 Performance of the naive data-parallel marching cubes implementation on
100 random isovalues. WebGPU performance is typically on par with native
Vulkan code. ∗ failed on the Surface Pro 7. 154

4.6 ZFP decompression performance of the WebGPU implementation compared
to a native Vulkan version and ZFP’s original CUDA and serial decompres-
sor. Neither the Vulkan nor WebGPU implementation is on par with the
original CUDA implementation, though both are still capable of fast parallel
decompression. 155

4.7 Example isosurfaces on the data sets used in the benchmarks. Isosurfaces
are typically sparse, requiring little data to be decompressed and cached to
compute each surface, and even fewer blocks to be processed to compute the
surface geometry. 164

4.8 Average cache hit rates and isosurface computation performance for the data
sets and benchmarks performed. Isosurfaces are typically sparse and occupy
neighboring regions of the domain, leading to high cache rates for the sweep
benchmarks. The topology of the nested isosurfaces also allows for high hit
rates on random isovalues due to the high amount of overlap, whereas the
turbulent sheet isosurfaces do not overlap as much and see far lower hit rates.
Although the cache space required for the Miranda and DNS is small enough
to fit in the Surface Pro’s 3.8GB VRAM, for most isovalues, the cumulative
size of the cache and output vertex data is not. 167

4.9 Rendering performance for the isosurfaces shown in Table 4.7. WebGPU is
capable of interactive rendering of large triangle meshes even on lightweight
clients. 168

5.1 Weak scaling configurations for the Poongback benchmark, targeting roughly
1.4GB of volume data per client rank. 193

ix

CHAPTER 1

MOTIVATION AND CONTRIBUTIONS

Simulations have fueled a wave of scientific insights and discoveries over the past 30

years. To accurately simulate large and complex systems, these simulations are run in

parallel on up to hundreds of thousands of cores on high-performance computing (HPC)

systems and output massive amounts of data, on the order of hundreds of gigabytes per

time step. One path to gain insight from these simulations is through the use of visualization,

which, in a broad sense, involves creating images, plots, statistical summaries, or other

representations derived from the output data to study the data, either interactively or

through an offline process. This path, which runs from simulation, through I/O and

visualization, to arrive at scientific insight, forms the “Simulation Visualization Pipeline”

(Fig. 1.1).

With the push to deploy new exascale HPC systems and develop scalable simulations

capable of leveraging them, the pace of growth in the scale of these simulations has

accelerated rapidly. These upcoming exascale simulations will enable the study of key

large-scale problems across energy, molecular dynamics, cosmology, earth science, medicine,

and national security [257]; however, they introduce new challenges due to the scale of both

the computation and data produced. Although developing simulation codes capable of

scaling to such extremes is a significant challenge in its own right, the simulation code is

but one piece of the simulation visualization pipeline. To gain new insights from future

exascale simulations through visualization, the I/O system, data layout, and visualization

must also scale to high levels of parallelism and massive data sets.

The I/O system and data layout face additional challenges, as the bandwidth available

on HPC systems has not kept pace with the growth in computational power. Furthermore,

as visualization tasks are typically performed on more modest computational resources,

such as a laptop or visualization cluster, it is not sufficient to develop only strategies for

2

Local Visualization

Disk

(d) Tightly Coupled
In Situ

(a) Parallel I/O (b) Parallel Reads for
Post-Hoc Visualization

(c) Data Streaming or Transfer
for Post-Hoc Local Visualization

(e) Loosely Coupled
In Situ

Parallel Simulation Parallel
Visualization

HPC System

Visualization Task

Fig. 1.1: An overview of the simulation visualization pipeline. Data of interest for
visualization are produced by a parallel simulation run on an HPC system. The data
can be (a) saved to disk for post hoc visualization using a parallel I/O method. Post
hoc visualization can be done using (b) distributed parallel visualization algorithms on
a visualization cluster or a subset of nodes on the compute cluster, or (c) streamed or
downloaded to the scientist’s workstation for interactive exploration, e.g., on representative
subsets of the data. If the data are too large to save frequently enough for visualization, in
situ visualization can be employed. In situ visualization can be used (d) in a tightly coupled
configuration, where the visualization tasks are run on each simulation rank, or (e) in a
loosely coupled configuration, where data are transferred to a separate process running the
visualization.

processing full-resolution data on a large HPC resource. To enable the simulation visual-

ization pipeline, the data layouts and visualization methods must scale from interactive

exploratory use cases on representative subsets on a scientist’s laptop or workstation to

distributed execution on an HPC system. Enabling multiresolution interactive exploration

also enables deployment of complex visualizations in low-power environments to improve

accessibility; and the use of immersive technologies such as virtual reality (VR), through

which scientists can gain a deeper understanding of their data and interact with it in novel

ways. However, widely used I/O strategies focus on achieving high bandwidth writes

and reads, and do not construct the data layouts needed to enable such multiresolution

visualization applications.

In situ visualization has emerged as a key technology to enable visualization at exas-

cale [5]. As simulations grow in size, saving the data at a high enough temporal frequency

3

to perform the desired visualization becomes infeasible, due to either the time or space

required to write out the data. In situ visualization moves the visualization tasks to run

inside the simulation process or in parallel alongside it, eliminating the need to save the raw

data to disk. The plots, images, and other extracts computed by the visualization are far

smaller than the raw data, allowing them to be computed and saved far more frequently. A

key concern when adopting in situ visualization is the impact it will have on the simulation;

for example, the visualization code may not scale as well as the simulation code and thus

may impact overall performance.

The aim of this dissertation is to address issues arising in the simulation visualization

pipeline through a holistic approach that adopts adaptive and multiresolution processing

throughout the pipeline. Starting at the I/O step of the pipeline, this dissertation proposes

a spatially aware adaptive I/O strategy for large particle simulations. The proposed I/O

strategy adapts to nonuniform particle distributions to improve performance and outputs

the data in a layout readily usable for visualization, without sacrificing write or read

throughput compared to standard approaches. In the context of post hoc visualization,

this dissertation proposes a range of strategies that enable interactive visualization of

massive data sets at full resolution on HPC systems and in VR or the web browser. To

render the data interactively at full resolution, an asynchronous tile processing pipeline

is proposed that supports scalable image-, data-, and hybrid-parallel rendering. Methods

based on adaptive computation and multiresolution data layouts are proposed to enable

interactive visualization of massive data sets in VR and the web browser. Finally, to

minimize the impact of in situ visualization on the simulation, this dissertation proposes

a simulation-oblivious data transfer model for loosely coupled in situ visualization. The

proposed data transfer model minimizes the amount of computation performed in the

simulation during data transfers, and supports flexible placement of the visualization to

reduce its impact further. This dissertation demonstrates that a unified, end-to-end adoption

of adaptive and multiresolution data layouts and algorithms is critical to enable science at

exascale, and presents algorithms for doing so at key steps in the simulation visualization

pipeline.

The remainder of this chapter provides additional background on the simulation

visualization pipeline that the methods presented in this dissertation operate within.

4

Section 1.1 discusses this pipeline; Section 1.2 discusses challenges with I/O, data layout,

and post hoc and in situ visualization within this pipeline; and Section 1.3 summarizes the

contributions of this dissertation.

1.1 The Simulation Visualization Pipeline

The simulation visualization pipeline is the path through which data produced by a

simulation flows to eventually be used to gain scientific insight from the computation

(Fig. 1.1). In a typical simulation workflow, a parallel simulation is run distributed across

multiple compute nodes on an HPC system. Multiple processes may be run on each node;

each such process is referred to as a rank. Each rank is responsible for simulating some

subregion of the physical domain, thereby parallelizing the computation over hundreds

to hundreds of thousands of cores. The ranks communicate over the network to compute

phenomena that cross these subregion boundaries. Large-scale HPC simulations can run

for hours or days across hundreds to hundreds of thousands of cores. The raw simulation

data are periodically saved to disk using a parallel I/O library (Fig. 1.1a) for post hoc

visualization. Post hoc visualization can be performed on a visualization cluster at an

HPC center (Fig. 1.1b) or on a scientist’s workstation (Fig. 1.1c). Visualization is used to

produce images, charts, statistical summaries, segmentations, and other statistical or visual

representations, to ask and answer scientific questions about the simulated phenomena.

The visualization process can be interactive, where scientists can change the visualization

parameters and get immediate real-time feedback through some graphical application, or

offline, where they configure a long running task that produces the desired results. The

data output by the simulation can become so large that it is infeasible to save it frequently

enough to perform the desired visualization. In situ visualization techniques have received

growing interest in the simulation and visualization communities to address this issue. In

situ techniques run the visualization as part of the simulation (Fig. 1.1d), or in parallel to it

(Fig. 1.1e), eliminating the need to save the data to disk. The results of the visualization are

much smaller than the raw data, allowing the data to be saved out more frequently and

studied post hoc. In situ and post hoc techniques can also be used together in the same

workflow, where some frequent batch visualization is performed in situ while interactive

post hoc visualization is done on the less frequently saved raw data, augmented with the

5

outputs of the in situ visualization.

1.1.1 Simulation I/O

To quickly write out hundreds of gigabytes of data, simulations rely on parallel I/O

libraries that can take advantage of the HPC system’s fast network and parallel file system.

Parallel I/O libraries often provide multiple or tunable I/O strategies, as some strategies

work better on different networks, file system configurations, or levels of parallelism.

Common strategies used by these libraries are file per process, single-shared file, two-phase

I/O, and subfiling.

File per process works exactly as it sounds, where each process (i.e., rank) writes out

a file containing its local data. This strategy is simple and trivially parallel; however, the

massive number of files output by even medium scale simulations can overwhelm parts of

the parallel filesystem, leading to poor performance. Post hoc visualization on the output

of a file per process strategy is also challenging, as the simulation data are scattered across

hundreds to thousands of small files, and must be reassembled for processing each time the

visualization is run. Single-shared file also works as one would expect, where the simulation

processes work collectively to output their data into a single large file. Although the output

of this strategy is convenient to work with, the inherent global nature of the I/O process

limits its scalability. A file per process or single-shared file approach can perform better

than the other on certain HPC systems, depending on the configuration of the network

and parallel filesystem. However, both encounter issues at large scales, either due to the

massive number of files produced in file per process strategies, or the global communication

required in single shared file strategies.

The latter two strategies, two-phase I/O and subfiling, balance between file per process

and single-shared file approaches to provide portable, scalable, and tunable I/O strategies.

Two-phase I/O strategies [64,156,173,177,270,284] begin by assigning a configurable number

of ranks to be data aggregators. The nonaggregator ranks are assigned a data aggregator to

send their data to, forming a subgroup. The ranks then send their data over the network

to their assigned aggregator, which writes a single file out after it has received data from

the ranks in its subgroup. Subfiling [39, 90] works in a similar manner, although it does not

necessarily aggregate the data over the network to an aggregator rank before writing it out.

6

Subfiling strategies group ranks into subgroups, and then perform single-shared file writes

within the subgroups, outputting a file per subgroup. In both strategies, the communication

required during I/O is restricted to the independent subgroups, avoiding the need for

global communication. The number and size of the output files and the number of ranks

that must communicate during I/O can be adjusted by tuning the size of the subgroups.

By tuning the size of the subgroups, simulations can adjust the I/O strategy to achieve

the best performance on a given network, filesystem, and level of parallelism. Two-phase

I/O and subfiling strategies can be seen as opening up a spectrum of I/O configurations

between file per process and single-shared file approaches, enabling simulations to pick the

best for a given environment. At one extreme of this spectrum, each rank can be put in its

own subgroup, yielding a file per process strategy; at the other end, a single subgroup can

be used, yielding a single-shared file strategy. The ability to tune two-phase and subfiling

I/O strategies to adapt to different HPC system configurations has resulted in growing

adoption in the I/O community.

1.1.2 Post Hoc Visualization

Post hoc visualization enables scientists to interactively explore the data output by the

simulation to ask and answer questions about the simulated phenomena, either directly,

through an interactive graphical application, or indirectly, by iteratively re-running a batch

computation. The visualization output includes renderings, images, charts, statistics, seg-

mentations, and other statistical or visual representations, depending on the questions the

scientist wishes to explore. The ability to interactively adjust the visualization parameters

on the fly is key to gaining insight from the data through exploration. The interactivity

provided in post hoc visualization makes it a critical aspect of the simulation visualization

pipeline even when adopting in situ visualization, which typically does not provide the

ability to significantly adjust the visualization parameters after the simulation has started.

When processing the full-resolution data or performing expensive computation, these

post hoc visualization tasks can be run in parallel on a visualization cluster (Fig. 1.1b), or,

when working with smaller data sets or multiresolution representations, can be run on

a workstation or laptop (Fig. 1.1c). In situ and post hoc visualization can also be used

together, either by combining fixed in situ visualization to generate known visualizations

7

of interest and interactive post hoc visualization to find unknown ones, or by having the in

situ visualization compute a sampling of the visualization parameter space to output a set

of “explorable extracts” that can be interactively explored post hoc.

The scientist’s laptop or workstation is a convenient platform for visualization, as

tasks can be run interactively as desired. Processing data locally also provides lower

latency interaction and allows for the use of immersive technologies such as VR. Due to its

convenience and interactivity, local visualization is widely used in practice; for example,

popular visualization tools such as ParaView [6] and VisIt [46] support it as their default

usage mode. However, the compute and memory capacity of a single workstation may

not be up to the task of processing the full-resolution output of a large-scale simulation or

performing complex calculations.

A visualization cluster can be used to process the full-resolution data or perform more

complex computation than can be done on a single workstation. The visualization cluster

can be a separate dedicated cluster at the HPC center, or simply a smaller job run on

the same cluster that was used to run the simulation. In either case, the visualization

cluster provides access to significantly more compute capabilities, with the trade-off of

convenience. The visualization tasks must now be submitted through a batch job system

and cost compute hours to execute, making interactive tasks more difficult and forcing

scientists to balance the amount of visualization that can be done within their compute

hour budget. Remote interactive or batch visualization is also supported by standard tools.

Both ParaView and VisIt are capable of connecting to a remote parallel visualization process

for interactive visualization on a cluster. However, the latency introduced by remote

interactive visualization can be a concern for visualization tasks requiring low latency,

such as VR. Methods developed for post hoc visualization on a cluster can also be good

candidates to deploy in situ, as they are already designed for execution in a distributed

parallel environment.

1.1.3 In Situ Visualization

The growth in compute power available on HPC systems has far outpaced the available

I/O bandwidth, making it infeasible to save the raw simulation data at a high enough

temporal frequency to perform certain analyses or capture certain features. This gap

8

between FLOPs and I/O is expected to grow on exascale systems. Although these new

systems will be capable of an ExaFLOP per second of computation, they will not be able to

write out an Exabyte of data per second, nor have enough disk space to store such a massive

volume of data. These limitations mean that far more data can be simulated than can

possibly be saved for post hoc visualization. This challenge has led to the growth of in situ

visualization techniques that run the visualization at the same time as the simulation. The

raw simulation data are passed directly to the visualization, eliminating the need to write it

to disk. The output of the visualization is usually far smaller than the raw data, allowing it

to be computed and saved at a much higher frequency than the raw data could be saved.

A wide range of strategies for performing in situ visualization have been proposed; for

examples see the survey by Bauer et al. [11] and the In Situ Terminology Project by Childs

et al. [45]. In situ strategies can be roughly classified into three categories, based on how

they are executed with respect to the simulation: tightly coupled, loosely coupled, or data

staging.

Tightly coupled approaches run the visualization tasks in the same process as the simu-

lation, allowing them to access the simulation data directly (Fig. 1.1d). The visualization

is integrated into the simulation by linking a visualization-specific library containing the

visualization code. The visualization typically receives pointers to the raw simulation data

to be processed to work directly on the simulation data. As the simulation and visualization

work on the same data, they must take turns executing, i.e., share time. After each time step

is computed, the simulation calls into the visualization code, and does not begin the next

time step until the visualization has completed. From a practical standpoint, integrating

the tasks of simulation and visualization into a single program makes it easier to run in the

batch execution mode used on HPC systems. Therefore, this is the approach adopted by

widely used libraries for in situ visualization, ParaView Catalyst [78] and VisIt LibSim [302].

However, the approach is not without trade-offs. As the simulation and visualization are

now run in the same process on the same nodes, the visualization must be aware of the

impact it has on the simulation. For example, if the visualization attempts to allocate a large

amount of memory that, when combined with the memory already used by the simulation,

exceeds what is available on the node, it will crash the simulation. Visualization tasks are

also typically run at smaller scales than simulations, and may not scale to the same level

9

of parallelism as the simulation. With the visualization integrated into the simulation, any

poor scaling or performance properties of the visualization will impact the simulation.

Loosely coupled approaches run the visualization tasks in a different process than the

simulation, and access the data by copying it over the network or via a shared memory

mechanism (Fig. 1.1e). By separating the visualization and simulation into separate

processes, loosely coupled approaches provide some desirable benefits at scale [148],

providing flexibility as to when, where, and at what scale the visualization tasks are run.

This flexibility makes it possible to reduce the impact of the visualization on the simulation,

to provide both processes with more compute and memory capacity, and to run each task at

its ideal level of parallelism. For example, the visualization can be run on a separate smaller

allocation of nodes and perform its computation as the simulation continues on to the next

time step to avoid forcing the simulation to wait for the visualization to complete or to

share resources with it. However, loosely coupled approaches bring their own trade-offs.

Loosely coupled approaches require making a copy of the data, take additional effort to

manage the coordination between the separate processes, and can be more challenging to

run in some configurations on current HPC systems that use a batch execution mode.

From the simulation’s perspective, the operations of handing off data to an I/O library

for output or to an in situ visualization library for processing share many similarities. Thus,

one approach to transparently integrate in situ visualization is to integrate it within the

I/O library already being used by the simulation. This approach has been used effectively

in ADIOS [177] and GLEAN [284]. Such an integration eases the development effort

required to adopt in situ visualization, as the simulation does not need to integrate a

new visualization-specific library that may have its own data layout requirements or data

structures. Beyond its practical convenience, such an integration can provide flexibility as

to how the in situ visualization is run [327]. The visualization tasks can be run in a tightly

coupled configuration on each simulation rank when it calls in to the I/O library; or, when

using a two-phase I/O pipeline, on the aggregators after aggregation in a data staging

configuration; or, even in a loosely coupled configuration, by integrating a distributed

data query system [63, 68, 326] into the I/O library that the visualization processes can

connect to and query data from. Integrating a distributed data query system is also often

done to enable data staging configurations, as the visualization tasks may need to fetch

10

data from other ranks to provide neighbor data. Integrating in situ within the I/O library

simplifies integration into the simulation and can be used to realize a range of in situ

visualization configurations; however, such approaches rely on the simulation already

using the specific I/O library containing integrated in situ visualization. If the simulation

relies on a different I/O library, potentially one specifically tuned for its data distribution or

data types, migrating to another library for the sole purpose of in situ may be undesirable.

1.2 Challenges in the Simulation Visualization
Pipeline

When viewed as a single continuous pipeline through which data flows from simulation

to visualization, key challenges can be observed that must be addressed to enable science

at exascale. In fact, these challenges already present issues today and will become more

pressing as simulation data sizes and execution scales grow at exascale. Addressing these

challenges is the focus of the work presented in this dissertation.

1.2.1 Challenges Stemming from Conflicting Data
Access Patterns

The data access patterns of the simulation and visualization differ significantly, placing

conflicting demands on the I/O library and data layout. Simulations demand throughput-

focused parallel I/O libraries that can effectively utilize an HPC system’s network and

parallel filesystem to provide high bandwidth. These parallel I/O libraries enable simu-

lations to quickly output hundreds of gigabytes of raw data so that they can continue to

computing the next time step as quickly as possible. High bandwidth reads are needed

when restarting a simulation from a checkpoint to quickly load the hundreds of gigabytes

of raw checkpoint data. Similar demands are placed on the data layout by the simulation,

which must take little time to construct during writes or to load during reads so as not to

impact I/O performance, and require little additional memory to store. On the other hand,

visualization tasks demand support for low-latency reads, multiresolution queries, and

spatial or attribute-based filtering. Supporting these queries natively in the output data

through a more advanced data layout enables visualization applications to quickly load the

data needed to compute a visualization, allowing them to compute visualizations faster

and provide better interactivity, even for massive data sets. The additional time taken to

11

construct the data layout has been regarded as less of a concern for visualization tasks, as

layout is constructed once ahead of time in a preprocess. High parallel I/O throughput

is also less of a concern for post hoc visualization tasks, as they are typically run at much

lower levels of parallelism than the simulation, i.e., on single laptops or workstations or

visualization clusters.

These different demands placed on the I/O strategy and data layout by the simulation

and visualization are in conflict with each other. Simulations demand high-throughput

parallel writes at large scales, requiring just a simple data layout; however, visualization

tasks demand low-latency multiresolution reads with support for spatial and attribute-based

filtering at small to moderate scales, requiring a more complex data layout. Reorganizing the

data into an existing visualization layout that supports low-latency multiresolution reads

and spatial and attribute-based filtering adds overhead during I/O, and thus is typically not

done as it would impact simulation performance. As a result, standard parallel I/O libraries

used by simulations output the data as a raw dump with minimal additional metadata.

Before post hoc visualization can be done, the raw output data must be converted to the

visualization optimized data layout. Visualization can be done on the original output data,

at the cost of reduced performance due to the less efficient reads performed and accessibility

on lower power devices, as the entire full-resolution data set must typically be read to

compute the desired visualization. Both the time spent building the data layout and the

additional storage required to store it scale with the size of the data. Postprocess conversion

of massive amounts of raw data to a visualization layout is made more challenging as

visualization tasks typically have access to more modest computational capabilities than

the simulation that produced the data. The cost of this step is already a concern today, and

with simulation data sizes expected to grow at exascale, addressing this bottleneck becomes

even more pressing.

1.2.2 Challenges in Visualization Across Parallel and
Local Environments

A number of challenges exist today in the scientific visualization field, stemming from

the need to render massive data sets at full resolution interactively or in situ at large scales,

the desire to visualize large data in immersive environments to improve understanding and

scientific workflows, and the goal of enhancing the accessibility of large data visualization.

12

The need for high-performance distributed rendering continues to grow, spurred by

trends in increasing data set sizes, the desire for higher fidelity and performance, and the

need for in situ visualization. Meeting these demands poses new challenges to existing

distributed rendering strategies, requiring scalability across a spectrum of memory and

compute capabilities on HPC systems. While the growth in data set sizes demands a

large amount of aggregate memory, the desire for more complex shading and interactivity

demands additional compute power. A number of applications have needs falling in

between these two extrema, requiring a combination of memory and compute, or the need

to render more complex data layouts that are not well supported by current compositing

strategies. Finally, in situ visualization requires the renderer to scale with the simulation

while incurring little overhead. Distributed rendering techniques that scale well for either

memory capacity or compute power are well known; however, supporting the entire

spectrum in between remains challenging, let alone doing so at large scales.

Prior work has demonstrated that the improved immersion provided by virtual envi-

ronments such as CAVEs [60] can improve user performance on tasks related to spatial

comprehension and search [157, 158, 226]. CAVEs consist of a room with multiple synchro-

nized projectors or monitors driven by a set of powerful workstations to display the virtual

environment. The recent growth in consumer VR systems has made high-quality immersive

VR affordable and widely accessible. However, using such systems to visualize large data

sets is challenging. Consumer VR systems have access to far less compute capabilities than

CAVEs as they are driven by single gaming desktops, yet place stricter demands on applica-

tion performance. Consumer VR applications must maintain consistently high framerates

and low-interaction latency to avoid motion sickness. For visualization programs tasked

with processing large volumetric data sets, this requirement poses a difficult challenge,

requiring the adoption of real-time data processing throughout the application pipeline.

The web browser provides a standardized, cross-platform environment, making it a

compelling platform to improve the accessibility of visualization applications. The browser

also eases the process by which users access an application, removing the need to install

and trust additional packages on their system. The browser has been widely used in the

information visualization community to ease deployment for developers and improve

accessibility for end users. However, scientific visualization applications rely on native

13

libraries (e.g.,VTK [249]), fast floating point operations, large amounts of memory, and

parallel processing or high-performance rendering on the GPU or CPU. These capabilities

were previously not available in the browser, forcing web-based scientific visualization

applications that work with large data to rely on backend servers for processing. Using

a server gives the application access to significant computational resources, at the cost

of latency for users, and financial cost and maintenance effort to the developers. Recent

developments in the browser have improved support for parallel GPU computing; however,

making large-scale data visualization truly accessible requires algorithms that can work in

the computationally constrained environment of the browser and on less capable hardware.

1.2.3 Challenges in Deploying Scalable, Low-Overhead
In Situ Visualization

Loosely coupled in situ approaches have found growing interest in recent years, due

to the flexibility provided as to how the visualization tasks can be run, which can be used

to reduce the visualization’s impact on the simulation. However, a number of challenges

remain to provide scalable, low-overhead loosely coupled in situ visualization. A key

benefit of loosely coupled in situ is the ability to run the simulation and visualization at

different levels of parallelism, such that each can achieve the best performance. Visualization

processes are typically more memory bound than the simulation, and actually running

fewer processes where each has access to more local data will reduce the amount of network

communication required, resulting in improved overall performance. For example, the

simulation could be run with M processes while the visualization is run with N processes,

where M >> N. However, to enable such M : N configurations, current strategies rely on

complex distributed memory query architectures or restructure the data during transfer.

Both techniques provide a convenient single block of data to process to the visualization

code, at the cost of data transfer performance. The simulation performance is also impacted,

as the simulation cannot proceed to the next time step until the transfer has finished.

Furthermore, although restructuring-based approaches reorganize the data into a single

block for each visualization process, they do not construct more advanced data layouts

such as those used in post hoc visualization. Instead, current approaches are more similar

to existing two-phase and subfiling I/O strategies, providing access only to the aggregated

raw simulation data. For example, each group of M
N simulation processes can be seen as

14

an I/O subgroup with a visualization process as the assigned aggregator. As a result, the

in situ visualization tasks do not have access to more advanced data layouts that they

may rely on or benefit from in a post hoc visualization scenario. The performance impact

of not having access to these data layouts is similar to that discussed above for post hoc

visualization, although interactivity and latency are less of a concern in an in situ use case.

1.3 Contributions

The aim of this dissertation is to address the key issues discussed above that arise in the

simulation visualization pipeline when tasked with processing massive data, through an

end-to-end approach based on adaptive and multiresolution techniques and data layouts.

To achieve this end-to-end pipeline, this dissertation makes multiple contributions across

I/O, data layout, and post hoc and in situ visualization. Fig. 1.2 illustrates how these

contributions fit together in the broader scope of the end-to-end simulation visualization

pipeline.

Visualization Task

Chapter 3

Chapter 4

Chapter 5

(d) Tightly Coupled
In Situ

(e) Loosely Coupled
In Situ

Parallel Simulation Parallel
Visualization

HPC System

(a) Parallel I/O (b) Parallel Reads for
Post-Hoc Visualization

(c) Data Streaming or Transfer
for Post-Hoc Local Visualization

Local Visualization

Disk

Fig. 1.2: An illustration of how this dissertation’s contributions fit together in the broader
scope of the end-to-end simulation visualization pipeline. The contributions discussed
work together to support massive data sets across the simulation visualization pipeline.

15

1.3.1 Adaptive I/O and Data Layout

Chapter 3 presents work [154,276] on spatially aware adaptive I/O strategies for particle

data sets that are capable of outputting the data directly in a visualization tailored layout,

without sacrificing parallel write and read throughput at scale. These strategies propose

novel load balancing strategies for I/O of nonuniform particle distributions to improve

I/O performance and portability. The proposed strategies construct a spatial data structure

over the domain, either a grid or k-d tree, to group ranks together to assign a similar

number of particles to each output file. The load balanced grouping computed creates

the subgroups used during two-phase I/O, ensuring roughly equivalent data movement

costs for each group, and thus for each output file. The amount of aggregation performed

is exposed as a tunable parameter for portability. Employing a spatial data structure to

create the aggregation groups ensures that each file contains a spatially coherent subregion

of data, providing an output layout well suited to efficient post hoc visualization reads.

Moreover, this dissertation contributes a new particle data layout, the binned attribute

tree (BAT), that balances between rendering and attribute-query focused access patterns.

The BAT layout combines a spatial k-d tree with fixed size bitmap indices to support

multiresolution spatial and attribute queries, while requiring little additional memory to

store. The proposed layout is specifically designed to be constructed quickly in parallel

during data writes and is split into a top-level tree and set of treelets. The BAT layout is

constructed during the proposed spatially aware two-phase I/O pipeline to output the

data directly in a visualization-focused layout, eliminating the data conversion bottleneck

without sacrificing parallel I/O performance. The presented I/O approaches are evaluated

on uniform and nonuniform particle distributions on four HPC systems to demonstrate

their portability and scalability. Finally, an evaluation is conducted to demonstrate the BAT

layout’s suitability for low-latency multiresolution spatial- and attribute-based queries. The

contributions of this chapter are:

• A fast semiadaptive approach for spatially aware I/O based on an adjustable uniform

grid that supports a subset of nonuniform particle distributions;

• A fully adaptive approach for spatially aware I/O based on an aggregation tree that

supports a wide range of nonuniform particle distributions;

16

• A novel combination of k-d trees and bitmap indexing to support multiresolution

attribute and spatial queries with little overhead on particle data; and

• Parallel construction of the proposed data structure during spatially adaptive I/O

with little overhead.

1.3.2 Post Hoc Visualization

Chapter 4 discusses a number of contributions that propose methods to enable visu-

alization of massive data sets at large scales and in computationally constrained environ-

ments. The proposed works range from from full-resolution distributed rendering on HPC

systems [274, 281] (Section 1.3.2.1), to adaptive and multiresolution methods that enable

visualization in virtual reality [189, 277] (Section 1.3.2.2) and the web browser [279] (Sec-

tion 1.3.2.3). The works are discussed in order of increasing data management complexity

and computational constraints.

1.3.2.1 A Distributed FrameBuffer for Scalable Ray Tracing

Section 4.1 proposes the distributed framebuffer (DFB) [281], an asynchronous tile-based

pipeline to accelerate image processing tasks in distributed renderers. The image processing

tasks can be, for example, depth compositing, sort last compositing, tone mapping, and so

on. The DFB decomposes the image processing tasks using a tile-based work decomposition,

where the dependencies for each task are constructed per tile at runtime by the renderer.

The task dependencies are not necessarily tied to the renderer’s work or data distribution,

providing the flexibility to implement a wide range of distributed rendering algorithms

within a unified framework. The DFB performs all communication and computation in

parallel to the renderer, enabling it to reduce overhead by eagerly completing tasks during

rendering. Although the DFB is flexible enough to support a wide range of distributed

rendering methods, it does not make a performance trade-off to do so. The contributions of

this work are:

• An asynchronous tile-based pipeline for image processing tasks in distributed render-

ers built on flexible per tile task dependencies; and

• A set of distributed rendering algorithms built on this approach, covering standard

use cases and more complex configurations.

17

1.3.2.2 A Virtual Reality Visualization Tool for Neuron
Tracing

Section 4.2 presents a new virtual reality tool for neuron tracing in large connectomics

data sets, VRNT, developed through a collaborative design study with neuronatomists [189,

277]. VRNT is built on an intuitive painting metaphor developed through this design study,

which explored various interaction and rendering modalities to design an effective tool for

neuron tracing in VR. Beyond interaction design, a core challenge faced in VRNT to enable

immersive visualization of massive data sets is meeting the strict resolution and frame rate

demands of VR. To do so, VRNT introduces a real-time page-based data streaming and

rendering system, built on top of a multiresolution data layout. VRNT is evaluated through

a pilot study conducted with trained neuroanatomists to compare neuron reconstruction

accuracy and speed against industry standard tools. This work demonstrates that, given

a high enough framerate and appropriate rendering and interaction techniques, the 3D

interface provided in VR substantially improves the overall user experience by allowing

neuroscientists to directly interact with their data. The contributions of this work are:

• A design study on using consumer-grade VR technology for neuron tracing; and

• A real-time page-based data processing framework that allows neuron tracing in data

sets that are orders of magnitude larger than feasible with existing approaches.

1.3.2.3 Interactive Visualization of Terascale Data in the Browser

Section 4.3 presents a new GPU-parallel isosurface extraction algorithm, block-compressed

marching cubes (BCMC) [279], for interactive isosurface computation in compute and

memory constrained environments, such as the web browser. BCMC builds on a block-

compressed volume data layout and novel GPU-driven memory management and caching

strategy that allows working with compressed volumes on the GPU without CPU inter-

action. BCMC decompresses and caches blocks as needed to compute a given isosurface,

taking advantage of the sparsity of typical isosurfaces to reduce its memory footprint. To

accelerate computation, BCMC runs the entire isosurface extraction pipeline, consisting

of vertex computation, data decompression, and cache management, on the GPU. By

combining state of the art adaptive precision and resolution trade-offs in the data layout

and adaptive processing for computation, BCMC is able to interactively isosurface up to 1B

18

voxels and 1TB of volume data, entirely in the browser. The contributions of this work are:

• A GPU-driven parallel isosurface extraction algorithm capable of interactive isosurface

computation entirely in the browser; and

• A GPU-driven memory management and caching strategy that allows working with

compressed data on the GPU without CPU interaction.

1.3.3 In Situ Visualization

Chapter 5 discusses work on adaptive and low-overhead approaches for in situ visual-

ization. Section 5.1 discusses how the DFB ([281], (Section 4.1) can be applied to accelerate

in situ rendering of image databases [275] for “explorable extracts” in situ methods such as

Cinema [7]. The DFB supports rendering multiple images simultaneously, allowing in situ

applications to render multiple camera viewpoints and scene configurations at the same

time to more fully utilize the available compute resources. Section 5.2 discusses work in

progress to integrate data-staging in situ visualization into the adaptive spatially aware

I/O strategies contributed by this dissertation ([154, 276], Sections 3.1 and 3.2). Providing

data-staging in situ visualization in the presented I/O pipelines allows the visualization

to take advantage of the load balancing already performed for I/O, and to leverage the

BAT layout built during I/O to accelerate spatial and attribute-based filtering. Providing

the same data layout used post hoc to in situ visualization tasks also eases the process of

bringing post hoc visualization tasks to an in situ context.

Finally, Section 5.3 presents a simulation-oblivious approach to data transport for loosely

coupled in situ visualization [278, 280, 282], to minimize the impact of the visualization on

the simulation. The presented approach adopts a simulation-oblivious data model that

explicitly does not perform data restructuring during data transfer to minimize the amount

of simulation time spent transferring data to the visualization. The presented approach

is well suited to M : N configurations, allowing the simulation and visualization to be

run in their optimal configurations to improve overall performance, natively supports

asynchronous and on-demand execution, is portable across a range of HPC or ad hoc cluster

systems, and allows minimizing the impact of the visualization by executing it on different

nodes than the simulation. The contributions of this chapter are:

19

• A simulation-oblivious data transfer model that minimizes the impact of in situ

visualization on the simulation; and

• A data-staging in situ approach that enables the visualization to leverage the same

data layouts available post hoc with little overhead.

CHAPTER 2

RELATED WORK

This chapter reviews prior work across the simulation visualization pipeline relevant

to the work presented in this dissertation, from I/O and data layout to post hoc and in

situ visualization. Section 2.1 discusses prior work on scalable I/O for particle data related

to our proposed I/O strategies. Section 2.2 discusses prior work on visualization focused

data layouts for massive data sets, covering both rendering and attribute-query optimized

layouts. Section 2.3 discusses a range of works on interactive post hoc visualization for

massive data, from scalable distributed rendering strategies on a cluster to immersive

or web-based single user environments. Finally, Section 2.4 reviews work on in situ

visualization in tightly coupled, data staging, and loosely coupled use cases.

2.1 Parallel I/O for Particle Data

Organizing and efficiently accessing large-scale grid-based structured data has always

been the aim of several high-level parallel I/O libraries. The most prominent examples are

Parallel HDF5 [115], Parallel NetCDF (PnetCDF) [137], ADIOS [177], and GLEAN [284].

To portably achieve high-bandwidth writes, current parallel I/O libraries use two-phase

I/O [64,156,173,177,270,284] or subfiling [39,90]. Although the I/O strategies used in these

libraries are general purpose, robust, and achieve high bandwidth, the output data layout is

not well suited to the read access patterns required for interactive exploratory visualization

of massive data sets. Current I/O strategies typically output the data in row-major blocks,

and do not reorganize the data or create additional metadata to efficiently support the

spatial and attribute queries performed by post hoc visualization tasks. As a result, post

hoc visualization tasks may be forced to make inefficient reads on the data, impacting

visualization performance. Parallel IDX (PIDX) [156] is a two-phase I/O library that outputs

the data in a cache-oblivious, multiresolution layout using a spatially aware two-phase

21

I/O strategy. The data layout output by PIDX supports low-latency multiresolution reads,

making it amenable to interactive post hoc visualization of massive data sets, even on low-

power devices. PIDX has been demonstrated to provide portable, scalable I/O performance

on structured grids [150, 153, 155, 156] and AMR [151] at high levels of parallelism, while

writing the data in a layout that natively supports multiresolution visualization queries.

Although these libraries are effective at dealing with structured data, they provide

limited support for particle data, typically treating it as a set of one-dimensional (1D) arrays.

For example, see HDF5’s H5Part API for particle data [41,123], which provides a convenient

wrapper over writing 1D arrays of data. Widely used approaches to I/O for particle data

output either a single-shared file [40, 41, 123, 178, 225, 259] or a file per process [21, 191]. As

observed previously on I/O for structured grids, such approaches can work well on a single

HPC resource or provide reasonable performance at some scales, but struggle with large

core counts or portability across different networks and parallel file systems. To address the

limitations of single-shared file and file per process I/O, recent work [39, 105] on scalable

I/O for particle data began to leverage subfiling to improve scalability and portability.

Habib et al. [105] employed a subfiling approach for massive cosmology simulations

(HACC) on the IBM Blue Gene/Q. Their approach grouped processes by their I/O node to

create the subfiling subgroups and structured writes within the file to avoid file lock

contention on the parallel filesystem. The subgroups are structured similar to those

described by Vishwanath et al. [284] and Bui et al. [37] for efficient two-phase I/O on

the IBM Blue Gene/P and Blue Gene/Q, respectively. Habib et al. demonstrated their

approach on up to 1 trillion particles (47TB) on 262k cores, where they were able to write

the data at 118GB/s. However, the subgroups created for subfiling are not guaranteed to

output a single spatially coherent block of data [117]. As a result, post hoc visualization

tasks performed on the data may need to access many individual files to load a spatial

subregion of the data for processing. Habib et al. also provided an I/O strategy that outputs

a single-shared file using PnetCDF to provide the data in a more widely used format. The

single-shared file mode supports outputting metadata about the individual rank’s block of

data within the file, providing the spatial bounds of each block and its location within the

file. However, the strategy does not merge blocks into larger ones or explicitly structure

them in the file to improve coherence for spatial queries. Although the metadata can be

22

used to accelerate spatial queries, reads still need to access multiple disjoint regions of the

file to read particles from all blocks overlapped by a query. Scalability is also a concern

when outputting this format, as it can be written only in a single shared file mode.

Byna et al. [39] examined tuning HDF5’s subfiling strategy on two particle I/O kernels.

Data were written through HDF5’s particle API, H5Part [123]. Although they found

that subfiling I/O improved performance over single-shared file I/O, HDF5’s subfiling

strategy imposed significant limitations on post hoc visualization tasks, requiring the data

to be read with the same number of processes as were used to write the data. As post

hoc visualization tasks are typically run at much smaller scales than the simulation, this

limitation prevents using the output files directly for visualization on workstations or

smaller clusters. Moreover, as H5Part treats the particle data as 1D arrays of data, it is not

able to output the particle data in a visualization tailored layout with metadata to accelerate

spatial or attribute queries. Without this metadata, post hoc visualization tasks are forced to

loop through and filter the particles to perform such queries, leading to poor performance.

The work presented in this dissertation addresses issues with current I/O strategies for

particle data by developing adaptive and scalable I/O strategies for nonuniform particle

distributions that are capable of outputting the data in a visualization-tailored layout.

2.2 Visualization Optimized Data Layouts

Post hoc visualization tasks are often performed on single workstations or small clusters,

with access to far less compute and memory capacity than was used to run the simulation.

Data access is driven by user exploration, often involving spatial and attribute subset

queries [40,87,122,246,258,306,308,309]. Support for low-latency multiresolution reads and

level of detail (LOD) is also desirable [82, 87, 106, 122, 246, 247, 251] to enable visualization

on low-power devices, or while additional data are loaded. However, as discussed above,

the raw data output by the simulation typically does not include the metadata or structures

required to efficiently support such queries. Post hoc visualization tasks must either perform

a lengthy postprocess conversion step to transform the data into the desired visualization

layout, or tolerate poor read performance on the data. The cost of the conversion, in terms

of compute time and additional storage needed, scales with the size of the data, making the

process challenging or infeasible for massive data sets.

23

A large number of rendering-focused (Section 2.2.1) and attribute-query focused (Sec-

tion 2.2.2) data layouts have been proposed in the visualization and scientific data manage-

ment communities. Rendering-focused layouts typically provide support for read access

patterns involving spatial filtering, low-latency multiresolution reads, LOD, or progressive

reads. Supporting some or all of these operations is needed to enable efficient on-demand

or progressive loading for interactive applications, and to enable interactive visualization

of large data sets on low-power or remote devices. Attribute-query focused layouts, on

the other hand, treat the data more akin to entries in a database, applying ideas from

the database community to support efficient attribute-based filtering operations. Such

layouts support efficiently querying and returning the subset of data satisfying a desired

attribute filter, for example, “x > 5 and temperature < 100”, to retrieve data of interest

for visualization. Although prior work has focused on optimizing the data layout for

either rendering or attribute queries, relatively little work has been proposed to satisfy

both domains. The data layout proposed in this dissertation takes a step in this direction,

proposing a layout that balances between these two use cases while incurring little memory

overhead. Furthermore, the proposed data layout is specifically designed to be built quickly

in parallel during I/O, thereby eliminating the need for a postprocess data conversion while

incurring little computational impact on the simulation.

2.2.1 Rendering-Focused Layouts

A wide range of rendering-focused layouts have been proposed, providing support for

spatial filtering, LOD, and low-latency multiresolution reads. Rendering-focused layouts

are typically built on top of spatial hierarchies (Fig. 2.1), for example, k-d, octree, and

other tree-based hierarchies [57, 58, 76, 87, 93, 111, 112, 121, 122, 147, 233, 247, 251, 296, 306],

bricking [82, 85, 106, 176, 227, 246], and other hierarchical layouts [22, 215, 293]. The spatial

hierarchy can be used to accelerate spatial queries on the data, or to enable on-demand

loading by filtering out data that are outside the region of interest. The hierarchy can also

be augmented with various forms of LOD information to provide fast access to coarse

representations of the data to enable low-latency multiresolution reads and rendering on

low-power devices. The spatial hierarchies constructed can also be used to accelerate

rendering algorithms to display the data.

24

(a) Quadtree (b) k-d tree (c) 32 tree (d) Bricking

Fig. 2.1: 2D examples of the spatial structures widely used in rendering-focused layouts. (a)
The Quadtree [81] employs a fixed subdivision where regions can be recursively subdivided
into 2× 2 children if needed. The Quadtree extends to an octree [303] in 3D, refining each
region into 23 children. (b) The k-d tree [18] is a binary tree that partitions data along a line
on one axis (in 3D, a plane) at each level. The line (or plane) can be placed at the median or
mean of the objects, or a different location, to best partition the data. (c) The N3 tree [57] (in
2D, N2) is a generalization of the octree that divides each region into N3 children, allowing
for wider fanout and shallower trees. (d) Bricking is a nonhierarchical layout that divides a
grid (e.g., a regular grid volume) into a coarser grid of bricks of some size. The coarser grid
can be used to quickly load data from specific subregions. For additional discussion and
theoretical results on spatial data structures, see the excellent book by Samet [241].

A concern with approaches that construct and store additional hierarchical or LOD

information is the additional memory required to store this information, as this cost typically

scales with the size of the original data set. Prior work has adopted compression or

quantization [87,122,127,128,147,246,296] to reduce memory overhead, or compensated for

this overhead by discarding subsets of the data [306]. Implicit hierarchy approaches [215,

236] have been proposed to eliminate the memory overhead of storing a hierarchy and

additional LOD information. Implicit hierarchy approaches reorder the data to form a

hierarchical layout, for example, using a Z-order [236] or hierarchical Z-order [215] curve.

Implicit approaches can eliminate the memory overhead of storing the hierarchy, but at the

cost of losing support for certain rendering queries or restricting the quality of LOD that

can be provided.

Data layouts based on octrees [93, 121, 147], N3 trees [57, 58, 76, 111, 112, 168, 296], and

bricking [82, 85, 106, 176, 227] have been used effectively for massive volumetric data sets

(also see the survey by Beyer et al. [22]). These layouts are fundamentally based on voxel

or grid hierarchies, or a grid-based partitioning, and map well to regular grid, octree, and

other grid-based volumetric data sets. Implicit hierarchies have also been proposed for

25

volumetric data, by reordering the voxels using a hierarchical Z-order curve [215]. The

support for spatial filtering, LOD, and low-latency multiresolution reads provided by these

layouts has been used extensively to enable interactive rendering of massive volumes that

do not fit in CPU or GPU memory.

Octree layouts have been used effectively to build hierarchies over a bricked volume,

or to directly represent the volume data as a multiresolution hierarchy. Hong et al. [121]

presented an approach to rendering large regular grid volumes by bricking the data and

constructing a min-max octree [303] over the bricks. The min-max octree is used to load

bricks onto the GPU on-demand for rendering while ignoring those that are not visible,

due to either the camera position or the transfer function. Knoll et al. [147] proposed a

min-max octree-based approach to render implicit isosurfaces of large volumes that merged

voxels with similar or uninteresting values to build the octree and compress the data. The

resulting octree required far less memory to store than the original data and could be used

to accelerate ray tracing, enabling interactive isosurface rendering on consumer systems

that would otherwise be unable to fit the data in memory. Gobbetti et al. [93] proposed an

octree based on-demand loading approach for rendering large volumetric data on the GPU

similar to that of Hong et al. Gobbetti et al. stored downsampled representations of the

bricks in the octree inner nodes to support LOD rendering based on the camera position,

whereas Hong et al.’s approach supported rendering the bricks only at full resolution.

N3 trees represent a superset of octrees (an octree is a 23 tree), allowing for shallower trees

with more data stored at each level [168]. N3 trees are especially well suited to representing

regular grid volumes, as the shallower hierarchy reduces the memory overhead required to

store it. Crassin et al. [57, 58] introduced Gigavoxels for out-of-core rendering of massive

sparse grids. The Gigavoxels layout consists of an N3 tree where each node in the tree can

reference a 3D brick or constant value. Bricks referenced by inner nodes are created by

downsampling those of the children to provide a multiresolution layout. Gigavoxels can be

seen as an extension of the octree layout proposed by Gobbetti et al. [93] to support wider

branching factors in the tree, require less memory, and more efficient streaming during

rendering. Engel [76] presented an extension of Gigavoxels to enable progressive rendering

of dense data sets. Harel et al. [111, 112] presented the hyper tree grid, which provides a

two-level data layout to support a broad range of tree-based adaptive mesh refinement

26

simulations. The hyper tree grid consists of a top-level grid, where within each cell a hyper

tree is stored. A hyper tree is a N3 where N = 2 or N = 3. Harel et al. provided methods

for query-driven and multiresolution reads of the data using cursors, which were used

to enable LOD rendering of large data sets [69]. Wang et al. [296] proposed the brick tree

layout, which provided an efficient N3 tree layout for low-latency multiresolution rendering

of massive scientific grid data sets. Wang et al. adopted a similar approach to the hyper

tree grid to support noncubic or massive data sets by constructing a grid of brick trees. The

brick tree is also able to compress the data by merging bricks with similar values.

Brick-based layouts rearrange the volume into a grid of bricks, removing the need

to store a tree or to perform tree traversals when loading the data. Bricking has proven

especially useful for managing massive regular grids, as the layout can be constructed by

partitioning the volume into subregions and reorganizing the voxels. Prohaska et al. [227]

proposed a brick-based layout using HDF5’s chunked file mode to enable visualization

of large micro-CT scans. For each brick, they constructed and stored multiple coarser

resolutions to provide low-latency multiresolution reads. Data are fetched from a remote

server by a visualization client and reorganized into an octree for rendering. Prohaska et

al. used view-dependent refinement to request higher resolution bricks from the server.

Ljung et al. [176] proposed a similar multiresolution brick layout, wherein the bricks are

compressed and decompressed during rendering based on the transfer function variance in

the brick. The Tuvok architecture presented by Fogal et al. [82] employed a multiresolution

brick layout similar to that of Prohaska et al. [227]; however, Tuvok supported on-demand

streaming and caching of bricks to render data sets larger than GPU memory. Work by

Hadwiger et al. [106] and Fogal et al. [85] proposed ray-guided methods for on-demand

streaming of massive multiresolution brick-based layouts. Both approaches are based on a

virtual memory technique. As the renderer traverses the volume, it attempts to load data

for processing. If the required resolution brick is missing, a cache miss is generated and

the brick is uploaded in the next frame. Whereas Hadwiger et al. [106] performed a virtual

address lookup for each sample taken by the renderer, Fogal et al. [85] performed this lookup

per brick and then computed all needed samples for the brick. The GPU-driven parallel

isosurface extraction algorithm proposed in this dissertation is based on a compressed brick

layout of the volume data built using ZFP [171]. Bricks are decompressed and cached on

27

demand as needed to compute the isosurface through a GPU-driven cache.

Pascucci and Frank [215] proposed an implicit hierarchy approach for volume grids by

reordering the voxels using a hierarchical Z-Order curve. Voxels along progressively finer

Z-Order curves are stored in the file to reorder the data, constructing an implicit spatial and

resolution hierarchy. Low-latency multiresolution reads are performed by progressively

reading additional data from the file, while the spatial locality of the Z-Order curve can

be used for spatial filtering. Their approach is able to reduce memory overhead by not

constructing explicit coarser resolutions of the volume and not building explicit tree or

other hierarchies over the data. This approach forms the basis of the IDX file format, which

is used in the VR Neuron Tracing tool proposed in this dissertation to provide efficient

access to large connectomics volumes.

The ability of tree-hierarchies’ ability to adapt to nonuniform data distributions has

made them an effective data layout for particle data sets. Data layouts based on k-d

trees [128, 238, 306], BSP trees [217], cluster hierarchies [122], and octrees [8, 62, 75, 86, 87,

127, 141, 208, 209, 246, 247, 251, 252, 304] have been used effectively for massive particle data

sets. As was the case with data layouts for volumetric data, the overhead required to store

the hierarchy or introduce new data for LOD scales with the data set size, motivating the

development of low or zero overhead implicit hierarchy approaches [236], along with the

adoption of compression, quantization, and other memory reduction techniques [87, 122,

128, 238, 246, 306].

Particle data layouts based on k-d trees [128, 238, 306], BSP trees [217], and cluster

hierarchies [122] have been employed as the data structures’ flexibility enables them to

construct an efficient and balanced hierarchical partitioning, even for highly nonuniform

distributions of data. Rusinkiewicz and Levoy’s seminal work on QSplat [238] achieved

multiresolution point-based surface rendering using a bounding sphere hierarchy. The

hierarchy is constructed by first building a midpoint-split k-d tree, where inner nodes

represent their children by a bounding sphere enclosing them. However, the final data

layout used in QSplat is not a binary tree. After constructing the k-d tree, inner nodes of

the tree are merged to produce a shallower tree with a wider branching factor. Hubo et

al. [128] presented a method for constructing a quantized k-d tree for ray tracing of large

point clouds where split plane and point positions are quantized to the bounding box of the

28

inner node. Woodring et al. [306] presented an approach for constructing a k-d tree with

LOD information in situ for cosmology simulations. The k-d tree could then be saved to

disk and used directly in post hoc visualization to provide multiresolution reads. However,

they generated the coarser levels of detail by sampling and duplicating subsets of particles

up the tree. As a result, their approach doubled the amount of particles that must be stored,

which they alleviated by optionally discarding some levels of the tree. The remaining levels

were found to still provide accurate approximations of the data for visualization. Pauly

et al. [217] described an approach for constructing a BSP tree over a point cloud based

on principal component analysis (PCA) [138]. The plane partitioning the points at each

level is placed at the centroid of the set of points and oriented along the largest eigenvector

of their covariance matrix. Hopf and Ertl [122] presented a similar PCA-split tree build

for cosmology data, although they used the PCA-split process to construct a tree with a

wider branching factor. Hopf and Ertl produced a cluster hierarchy consisting of multiple

clusters at each level, where each cluster was split into a variable number of children on the

subsequent level. Clusters on a level were repeatedly split as described by Pauly et al. [217]

until a target minimum distortion level was reached. Subsequent levels were produced by

decreasing the minimum distortion level and repeating the splitting process. A concern

with BSP tree-based approaches compared to those using more fixed subdivison schemes

(i.e., k-d trees or octrees) is the additional computational cost required to determine the

splitting planes.

Octrees have been widely used [8, 62, 75, 86, 87, 127, 141, 208, 209, 247, 251, 252, 304] for

rendering-focused layouts for particle data coming from scientific simulations and LIDAR

scans. The wider branching factor provided by an octree can reduce traversal overhead,

while the implicit multiresolution gridding provided by the octree can be used to produce

voxelized or LOD representations. However, the fixed subdivision structure of octrees

may not adapt as well to highly nonuniform distributions, leading to poor quality trees.

Pajarola [208] proposed an octree layout and LOD scheme for point-based surface rendering

by storing the average of the points at each level in the inner nodes of the octree. Pajarola

et al. [209] later extended this approach to support out-of-core rendering of massive data

sets by flattening the octree out to a sequential list of points grouped by their LOD level,

similar to the sequential point tree layout of Dachsbacher et al. [62]. To support efficient

29

out-of-core rendering of large data sets, the list of points was grouped into blocks by LOD

layer on disk and aligned to page boundaries for efficient access via memory mapping.

Schütz et al. [252] proposed a similar approach for rendering out-of-core LIDAR data sets

in VR, where a point’s LOD level was offset by a psuedorandom value to provide smoother

transitions between LOD levels. Fraedrich et al. [86, 87] constructed an octree over a 10B

particle Millennium Run cosmology simulation to achieve interactive rendering on GPUs.

LOD was provided by merging points up the tree based on their visible size. To reduce

memory use, particle attributes in the tree were quantized after a logarithmic remapping to

reduce the error introduced by quantization. Fraedrich et al. achieved efficient disk access

by grouping nodes in the tree to form a “page tree”, where nodes in the original octree

that shared a common parent or ancestor were grouped on disk to form larger blocks of

memory. Scheiblauer [247] proposed the modifiable nested octree, which created LOD by

storing a subsampling of the points at inner node during construction. The points stored

in the inner nodes are not duplicates of those at finer levels, thereby reducing memory

overhead. Schütz [251] further extended this approach to support out-of-core rendering

and streaming to render massive LIDAR data sets in the browser. Schütz split the octree

up into chunks that group nodes sharing a common parent and their children down to a

configurable number of levels into a file, reducing the amount of data that must be loaded

for spatial queries or coarser LOD.

Implicit hierarchy approaches [236] have been proposed to reduce the overhead of

storing hierarchies for massive particle data sets. As with implicit approaches for volumetric

data [215], implicit approaches for particles are based on resorting the data to produce a

new list of points in the desired LOD ordering. Rizzi et al. [236] proposed an approach

for particle data similar to that proposed by Pascucci and Frank [215] for volume data.

The particles are first sorted in Z-order, after which they are reorganized into multiple

levels of detail by sampling particles along the curve. The resulting ordering is similar to a

hierarchical Z-order [215]. Their approach provided low-latency multiresolution reads by

loading successively larger subsets of the data from disk.

The Binned Attribute Tree layout proposed in this dissertation balances between rendering-

focused layouts and attribute-query focused layouts. The tree is based on a spatial k-d

tree [18], where subsets of points are sampled during construction at each inner node to

30

store for LOD without requiring duplication or the creation of representative particles.

The tree is built in two parallel stages on each aggregator during I/O, a coarse parallel

bottom-up build [144] and multiple treelets built top-down in parallel, and is stored on disk

in a layout designed to support efficient access to the treelets via memory mapping. Finally,

the nodes of the tree track fixed size bitmap indices, discussed in the following section, to

support efficient attribute-based filtering with little memory overhead.

2.2.2 Attribute-Query Focused Layouts

Simulation data follow a write-once read-many usage model, for which bitmap indexing

approaches have been demonstrated to be effective for accelerating attribute queries [27,

40, 42, 43, 49, 97, 98, 145, 205, 237, 258, 265, 267, 268, 305, 308–312, 326, 328]. Bitmap indexing

approaches treat the individual items in the data set, i.e., the voxels, particles, mesh elements,

etc., as individual entries in a database, and construct a bitmap index [205] over each

attribute to accelerate queries. A bitmap index consists of multiple bit vectors, where each

item in the data set is represented by a bit in each vector. Attribute queries can then be

answered by performing bitwise Boolean operations on the bit vectors to quickly find

the items satisfying the query. Each bitmap index encodes information about a single

attribute in its set of bit vectors, requiring a different index for each attribute. Queries over

multiple attributes, for example, “x > 5 and pressure < 10”, are answered by performing

the individual queries separately to produce bit vectors marking the items satisfying each

query, and then combining these bit vectors with a bitwise AND.

The bit vectors that make up the bitmap index can be used to encode different informa-

tion about each item’s attribute value, depending on which queries will be performed on the

data or the cardinality of the data attributes. Equality encoding [205] is a straightforward

method for encoding the attribute information. Given an attribute with cardinality C and

a data set with N items, C bit vectors are created, each with N bits (Table 2.1a). Bit i of

bit vector Ej is set if item xi has the j’th attribute value. Equality encoding is optimal for

equality queries, e.g., “x == 4”, as only one bit vector must be read to answer the query.

However, answering range queries, e.g., “x ≥ 3” or “2 ≤ x ≤ 4”, requires reading and

OR’ing together as many bit vectors as there are attribute values overlapped by the query.

Range encoding [305] encodes whether an item’s attribute is within a given subrange of

31

Table 2.1: Different bitmap index encodings for an attribute with cardinality C = 6.

(a) Equality bitmap encoding.

x E0 E1 E2 E3 E4 E5

{0} {1} {2} {3} {4} {5}

0 1 0 0 0 0 0
3 0 0 0 1 0 0
1 0 1 0 0 0 0
2 0 0 1 0 0 0
4 0 0 0 0 1 0
2 0 0 1 0 0 0
0 1 0 0 0 0 0
5 0 0 0 0 0 1

(b) Range bitmap encoding.

x R0 R1 R2 R3 R4

[0, 0] [0, 1] [0, 2] [0, 3] [0, 4]

0 1 1 1 1 1
3 0 0 0 1 1
1 0 1 1 1 1
2 0 0 1 1 1
4 0 0 0 0 1
2 0 0 1 1 1
0 1 1 1 1 1
5 0 0 0 0 0

(c) Interval bitmap encoding.

x I0 I1 I2 I3

[0, 2] [1, 3] [2, 4] [3, 5]

0 1 0 0 0
3 0 1 1 1
1 1 1 0 0
2 1 1 1 0
4 0 0 1 1
2 1 1 1 0
0 1 0 0 0
5 0 0 0 1

(d) Binned bitmap equality encoding.

x B0 B1 B2

[0, 2) [2, 4) [4, 5]

0 1 0 0
3 0 1 0
1 1 0 0
2 0 1 0
4 0 0 1
2 0 1 0
0 1 0 0
5 0 0 1

possible values using C − 1 bit vectors (Table 2.1b). Bit i of bit vector Rj is set if item

xi ∈ [0, j]. Range encoding can answer equality and range queries by reading at most two

bit vectors. Interval encoding [43] encodes whether an item’s attribute is within a given

subinterval of possible values using ⌈C
2 ⌉ bit vectors (Table 2.1c). Bit i of bit vector I j is set

if xi ∈ [j, j + m] where m = ⌊C
2 ⌋ − 1. As with range encoding, interval encoding is able to

answer equality and range queries by reading at most two bit vectors; however, interval

encoding is able to nearly halve the size of the bitmap index.

When considering attributes with very high cardinality, for example, floating point

scientific data, a massive number of bit vectors must be stored to create the bitmap index. To

address this, the attribute range can be partitioned into a set of bins, reducing the number of

values that must be represented in the bitmap index. The resulting binned encoding [237]

can be configured to represent the attributes using as few or as many bit vectors as desired

32

by adjusting the size of the bins. The bitmap index can then be constructed over these bins

using an equality, range, or interval encoding. A binned equality encoded bitmap index is

shown in Table 2.1d. However, binning comes at the cost of query performance. If the query

ranges do not lie at the bin boundaries, false positives found in the edge bins that are only

partially contained in the query must be filtered out. Sinha and Winslett [258] introduced

“multiresolution bitmap indices,” to reduce the amount of bit vector data that must be read

to answer a query. Their approach created multiple levels of binned bitmap indices at

different binning granularities. Queries begin by accessing the bitmap index created at the

coarsest binning to find the items contained in the query. Items that fall into bins that are

entirely inside or outside the query can be kept or discarded without accessing additional

bit vectors. Finer levels of bitmap indices are loaded to filter items whose attribute value

is contained within an edge bin at the current level. To avoid a terminology conflict with

“multiresolution reads,” we refer to this approach as “multilevel bitmap indexing.” Wu

et al. [311] performed an analysis of various bitmap encoding schemes, and proved that

specific two-level encoding strategies are optimal for answering range and equality queries,

compared to single or n-level indices and other encoding schemes.

Wu et al. [309] demonstrated the effectiveness of bitmap indexing at accelerating

queries for feature tracking, region growing, and region tracking tasks on 2D uniform grid

autoignitation data sets. Their approach employed a binned range encoded bitmap index,

which was compressed to reduce overhead. Compared to tree-based multidimensional

indexing methods (e.g., R-Trees [104], B-Trees [14], k-d Trees [18]), bitmap indexing is well

suited to data sets with high dimensionality, as the size of the index scales linearly with

dimensionality, whereas query cost scales with the number of attributes being queried.

Furthermore, the bitmap index can be constructed without reorganizing the underlying data.

Wu et al. [312] further demonstrated their approach on multidimensional range queries

for high-energy physics data sets. Stockinger et al. [264, 265] leveraged bitmap indexing

through an early version of FastBit [308] to accelerate range queries on 3D volumetric

data sets with many attributes. They demonstrated the effectiveness of their approach on

range queries to select voxels of interest for processing, for example, to accelerate finding

the voxels containing an isosurface to accelerate marching cubes [179]. Gosink et al. [97]

integrated support for bitmap indexing into HDF5 to provide a new attribute-query-based

33

API for HDF5, referred to as HDF5-FastQuery, also using an early version of FastBit [308].

They demonstrated significantly improved attribute-query performance over prior work

that integrated R*-trees for indexing into HDF5 [200]. Gosink et al. [98] applied multilevel

bitmap indexing to accelerate attribute queries on time-varying AMR data sets. They

employed a two-level bitmap index that was processed on the GPU to further accelerate

query response times.

Although bitmap indices have proven highly effective at accelerating attribute queries

on scientific data sets, they are not without limitations. A key concern when using bitmap

indices is the size occupied by the index. Although compression methods for bitmap indices

have been proposed [308, 310], the indices can still require a significant amount of storage.

Prior work has reported the bitmap index occupying an additional 30% [268] to 66% [49] of

the original data size, and in some cases approaching the original data in size [40, 48] or

exceeding it [313]. Bitmap indexing also faces difficulties when encoding high cardinality

attributes. Whereas binning and multilevel binning can address the need to otherwise store

an enormous amount of bit vectors, using binned bitmaps impacts query performance by

introducing false positives that must be filtered out. More advanced binning strategies have

been proposed [313] to address this “curse of cardinality”; however, the resulting bitmap

index requires significantly more storage than a regular binned bitmap index, and can even

exceed the original data in size.

As with rendering-focused layouts, the time taken to construct the bitmap index post

hoc is another main concern. The construction cost scales with both the number of items

and the number of attributes over which the bitmap index is built, posing a challenge for

massive data sets. Prior work has proposed to accelerate construction by building the index

in parallel on an HPC cluster [27, 49, 145], or in situ [268, 326, 328] to eliminate the need for a

lengthy post hoc build process. However, the simulation must now write the bitmap index

in addition to the raw data. The index can become quite large, which can place a significant

additional I/O burden on the simulation.

The binned attribute tree layout proposed in this dissertation provides support for

attribute queries through a fixed 32-bit binned bitmap index using equality encoding.

Rather than represent each item explicitly in the index, the presented approach indexes

only the inner and leaf nodes of the k-d tree to reduce memory use further. Which nodes

34

contain particles within the query can then be determined efficiently during tree traversal

by computing the bitmap representing all bins overlapped by the query. Each node is tested

for overlap with the query by computing a bitwise AND of its bitmap and the query bitmap

to determine if any of its children are contained in the query. Although the presented

approach is intentionally limited to 32 bins, reducing query accuracy somewhat, this allows

a significant reduction in the size of the bitmap index and to efficiently check queries

through a simple bitwise AND.

2.3 Post Hoc Visualization of Massive Data Sets

The work in this dissertation touches on a range of areas in post hoc visualization, both

on HPC systems and locally on workstations or laptops. Work related to the contributions

presented in this dissertation are discussed categorized by the domain in which they operate:

scalable distributed rendering on HPC systems (Section 2.3.1) and locally on workstations

or laptops (Section 2.3.2).

2.3.1 Scalable Distributed Rendering

A large body of previous work has studied parallel rendering techniques for distributed-

memory systems. These works can generally be classified as one of three techniques, first

discussed in the context of rasterization by Molnar et al. [193]: sort-first, sort-middle, and

sort-last. Sort-middle is tied to rasterization, since the rendering methods contributed

in this dissertation are based on ray tracing, the discussion below focuses on sort-first

and sort-last strategies. Sort-last is a data-parallel technique with which the workload is

distributed by subdividing the data set across multiple ranks (Section 2.3.1.1). Sort-first is

an image-parallel technique with which the workload is distributed across multiple ranks

by subdividing the image (Section 2.3.1.2). Hybrid approaches have also been proposed

that combine sort-first and sort-last techniques (Section 2.3.1.3).

2.3.1.1 Data-Parallel Rendering

Sort-last, or data-parallel, rendering is widely used to render massive data sets on

HPC systems. In a data-parallel renderer, the geometric primitives and volumetric data

are partitioned in three dimensional (3D) space, with each node assigned a subregion of

the overall data to render. Each node then renders its subregion of data to produce a

35

partial image, which must then be combined with other nodes’ partial images to create

the final image. Combining these partial images typically requires depth compositing the

overlapping partial images to produce a correct final image. It is this second step that

becomes the bottleneck at large core counts and high resolutions, and therefore has been

the focus of a large body of work (e.g., [72, 100, 101, 125, 183, 222, 320]). Although scalable

rendering methods for massive data have been proposed, standard data-parallel renderers

impose restrictions on how the data can be distributed among the nodes, are susceptible to

load imbalance, and are limited to local illumination effects.

Early work by Hsu [125] and Neumann [202] proposed approaches where each rank

rendered the pixels its local data projected to and sent those pixels to another rank that

owned the pixel for compositing. The compositing step of this algorithm is referred to as

direct send compositing. However, this approach can require a large number of messages

to be sent over the network and, in the worst case, all ranks to communicate with each

other. Ma et al. [183] proposed binary swap compositing, a bulk synchronous compositing

process that ensured all ranks participated in all steps to parallelize the compositing work.

The volume is distributed among the ranks using a k-d tree decomposition, allowing the

final image to be produced by traversing the tree from bottom to top and compositing the

images from a node’s children. The compositing work is distributed among all ranks at

each level by assigning each a successively smaller subregion of the entire image that it is

responsible for compositing. However, a limitation of binary swap is that the number of

ranks involved in the compositing process must be power of 2. Yu et al. [320] proposed 2-3

swap compositing, which generalized binary swap to support nonpower of 2 configurations.

2-3 swap employs a compositing tree where each node can have two or three children,

allowing the tree to be built with any desired number of leaves. Nodes with three children

divide the compositing work into thirds among the ranks, while those with two children

proceed as in binary swap. In contrast to binary swap, which ensured that each rank

must only communicate with one other rank at each level, the variable sized partitioning

employed in 2-3 swap requires ranks to communicate with at most two other ranks at each

level. Peterka et al. [222] proposed Radix-k, which further generalized the decomposition

employed by 2-3 swap to support variable-sized compositing groups. Radix-k factors the

n ranks into r rounds of compositing, n = ∏
r
1 ki. Each round consists of n

ki
groups with

36

ki ranks each exchanging image data. In each subsequent round, each rank exchanges its

image data with more distant neighbors. In the first round ranks are direct neighbors, in

the second they are k1 apart, in the third k1 × k1 apart, and so on.

Early work on compositing was developed in a single core or rank per core execution

model on HPC systems and achieved parallelism through bulk synchronous strategies that

swapped between communication and computation stages. However, current systems have

tens to hundreds of cores per rank, or GPUs with thousands of cores. Applications can

leverage multiple threads on a node to eliminate the overhead of on-node message passing

between processes, and can overlap communication and computation using asynchronous

messaging facilities. Howison et al. [124] demonstrated that a hybrid approach, with threads

for parallelism on a node and MPI for parallelism across nodes, outperformed traditional

rank per-core methods. Grosset et al. [100, 102] presented the task-overlapped direct send

tree (TOD tree) compositing method, which was designed specifically for HPC systems with

multicore CPUs and GPUs. TOD tree aimed to overlap communication with computation,

and to reduce communication overall, to reduce the additional time spent compositing after

local rendering had finished on each node. Grosset et al. split the compositing process into

three stages. First, ranks are divided into groups of m ranks, within which they perform

direct send compositing. At the end of this stage, each rank holds the composited image of

its group for a 1
m subregion of the image. The second stage composits the partial subregions

from each group by creating m groups, each with the ⌊ n
m⌋ ranks that contain the partial

subregion computed in the previous stage. Compositing in the second stage is performed

using a k-ary compositing tree, where ranks send their data to a designated receiver at each

level that composites the received images. At each stage, communication is performed

using asynchronous MPI to overlap communication with other computation performed by

the receiver or sender.

Most similar to the work presented in this dissertation on the Distributed FrameBuffer

when applied to data-parallel rendering is the dynamically scheduled region-based com-

positing approach proposed by Grosset et al. [101]. DSRB divides the image into strips

and constructed a per-strip blending order, referred to as a chain, based on the data that

projected to each strip. Each node renders its local data to the entire image, after which it

composites strips of its partial image with the corresponding chain. Partial compositing for

37

a chain start after receiving strips from successive nodes in the chain, thereby overlapping

compositing with rendering on other nodes. Restricting the compositing dependencies to

strips of the image has the additional benefit of removing nodes whose data does not touch

some strip from the chain. However, DSRB is restricted in the amount of rendering it can

overlap with compositing, as each node renders its entire image before starting compositing;

is applicable only to data-parallel rendering; and relies on a central scheduler to construct

the chains.

The IceT library [194] encompasses several different compositing strategies for sort-last

rendering and has been widely deployed across popular parallel scientific visualization

tools. Although IceT was initially designed for rasterization, Brownlee et al. [36] used IceT’s

depth compositing with a ray tracer inside of multiple visualization tools, although they

were hindered by the data distribution chosen by the tools. Wu et al. [314] employed a

similar approach to integrate OSPRay into VisIt, using OSPRay to render locally on each

rank and IceT to composite the image, and encountered similar difficulties.

2.3.1.2 Image-Parallel Rendering

Image-parallel renderers assign subregions of the image to different ranks for rendering.

To render large data sets, image-parallel rendering is typically coupled with some form of

data streaming or movement into a local cache, and is designed to exploit frame-to-frame

coherence. The data movement work can thus be amortized over multiple frames, as the

data rendered for a region of the image in one frame will likely be similar to that rendered

in the next frame. Early rasterization-based techniques used a sort-middle algorithm, where

the image was partitioned between ranks and the geometry sent to the rank rendering the

portion of the image it projected to [73].

Image-parallel rendering lends itself well to ray tracing, and to ray tracing out-of-core

data as ray tracers already process the image pixels in parallel and use acceleration structures

for ray traversal that can be adapted to stream and cache portions of the scene on-demand

as they are traversed. Image-parallel work distributions have been used effectively for

distributed rendering of replicated data in a number of ray tracers, for example, Manta [26],

OpenRT [288], and OSPRay [291]. Although typically used for data that can be stored in

memory on each node, this architecture can be used to render larger data sets by streaming

38

the data needed for the portion of the image rendered by each worker from disk [293] or

over the network [65, 133]. However, methods for image-parallel rendering of large data

can suffer from cache thrashing and are tied to specific data types or layouts.

Wald et al. [293] used a commodity cluster for interactive ray tracing of massive

models, where a top-level k-d tree was replicated across the ranks and lower level subtrees

referencing the geometry fetched from disk on-demand. DeMarle et al. [65] used an octree

acceleration structure to render large volumes, where missing voxels were fetched from

other ranks using a distributed shared memory system. Ize et al. [133] extended the

approach of DeMarle et al. to geometric data, using a distributed BVH. When rendering

fully replicated data, Ize et al. were able to avoid data movement and compositing, and

achieved 100FPS for primary visibility ray casting on 60 ranks. Biedert et al. [24] proposed

an image-parallel remote streaming and auto-tuning tiling framework that achieved up to a

2× performance improvement by improving the load balance of the rendering workload

among the ranks.

2.3.1.3 Hybrid-Parallel Rendering

Wheras image- and data-parallel rendering methods distribute work solely by parti-

tioning the image or data, hybrid-parallel renderers combine both strategies, aiming to

pick the best distribution for the task at hand. Reinhard et al. [234] first proposed a hybrid

scheduling algorithm for ray tracing distributed data, where the rays would be sent or

the required data fetched depending on the coherence of the rays. Samanta et al. [240]

proposed to combine sort-first and sort-last rendering in the context of a rasterizer, by

partitioning both the image and data among the nodes. Each node then rendered its local

data and sent rendered pixels to other nodes that owned the tiles its data touched. The tiles

were then composited on each node and sent to a display node. This approach bears some

resemblance to the Distributed FrameBuffer proposed in this dissertation, although it lacks

the DFB’s extensibility and support for ray tracing specific rendering effects.

Navrátil et al. [201] proposed a scheduler that combined static image and data decompo-

sitions for ray tracing, roughly similar to sort-first and sort-last, respectively. However, a key

difference of their approach when compared to a sort-last rasterizer is that rays were sent

between nodes, similar to Reinhard et al. [234], to compute reflections and shadows. The

39

static image decomposition scheduler worked similarly to the image-parallel algorithms

discussed previously. Abram et al. [1] extended the domain decomposition model to

an asynchronous, frameless renderer using a subtractive lighting model for progressive

refinement. Rays were sent between nodes to compute distributed illumination effects

and reported partial shading results back to the display to provide progressive refinement.

Park et al. [212] extended both the image and domain decompositions, and introduced

ray speculation to improve system utilization and overall performance. By moving both

rays or data as needed, these approaches were able to compute global illumination effects

on distributed data, providing high-quality images at additional cost. Biedert et al. [25]

employed a task-based model of distributed rendering that was able to combine sort-first

and sort-last rendering. Biedert et al. built their approach on an existing runtime system,

HPX [143], to balance between these strategies. Although their work used OSPRay for

rendering, the renderer was restricted to a single thread per rank and was noninteractive.

2.3.2 Local Visualization

In this dissertation we consider visualization in VR for the development of immer-

sive visualization applications in connectomics, and in the web browser, to improve the

accessibility of large data visualization.

2.3.2.1 Immersive Virtual Reality Environments for
Connectomics

Interest in using immersive VR environments for neuron tracing, and visualization in

general, to overcome the limitations of traditional 2D desktop interaction and rendering

modalities has been growing. In contrast to desktop software, immersive VR systems

enable users to visualize and interact with their data directly in 3D, providing a more

intuitive interface and allowing for better understanding of 3D structures [157,158,226]. VR

environments such as CAVEs [59, 60] have been demonstrated to be effective at enhancing

visualization tasks related to understanding 3D data. Prabhat et al. [226] performed a

comparative study on exploration of confocal microscopy data in desktop, fishtank VR,

and CAVE VR environments. They evaluated tasks focused on navigation and observation,

e.g., locating and counting features or describing some structure. In their study, Prabhat

et al. found that users tended to perform better on these tasks in the CAVE environment,

40

which provided better immersion. Laha et al. [157, 158] examined how VR system fidelity

affected the performance of common visualization tasks by varying field of view, head

tracking capability, and support for stereo display. The tasks studied were similar to those

studied by Prabhat et al. [226], involving search and examination of 3D structures. Laha

et al. found that more immersive VR environments improved users’ understanding of

complex structures in volumes [158] and isosurfaces [157].

The original CAVE used a tracked wand device with three buttons to manipulate

objects [60]. CAVE2 [79] employed a similar wand controller, using a modified PS3 Move

controller. CAVE2 also supported a prototype-tracked sphere controller, the CAVESphere,

for moving and interacting with the data, along with a tablet controller showing a web view.

Although CAVEs are able to provide high-quality VR, they are large and expensive systems,

both to purchase and to maintain, making their incorporation into the routine workflow

of scientists in small laboratories unlikely. Direct 3D interaction with the data can also be

challenging in a CAVE, as the user’s hands will block the displays as a selection is made,

thereby occluding the objects of interest. Although well suited for virtual tours of complex

data sets with application-centric software (see, for example, [232, 287]), using CAVEs for

day-to-day tasks involving frequent manipulation of data can be costly and challenging.

Due to the difficulty of providing input feedback when working with free-form 3D

controllers, prior work has evaluated the use of haptics to provide better feedback to the

user. Ikits and Brederson designed the visual haptic workbench [130], which combined

a stereo display table with a probe arm. The arm was used to interact with the data

and provide haptic feedback. For example, when tracing a streamline, the probe would

be constrained to follow it, providing the feeling of interacting with a physical object.

Palmerius et al. [210] described a system of haptic feedback primitives for computing

haptics on volumetric data, e.g., for directional or vibration feedback, which can provide a

greater sense of touching structures in the environment.

VR systems have also been proposed for visualization of electron and wide-field

microscopy data. Agus et al. [4] proposed a model for simulating lactate absorption

to compute lactate absorption maps on 3D segmented electron microscopy data sets. The

absorption maps could then be visualized in a CAVE or head-mounted VR environment, by

rendering the segmented neuron meshes colored by absorption rate. Boges et al. [30, 31]

41

proposed a VR tool for creating, editing, and visualizing skeletonizations of brain cells in

electron microscopy data, along with their segmented surface mesh. The neuron skeleton

was created by the user with the assistance of a guidance system that used the segmentation

to move points placed inside the mesh to the mesh’s center. Boorboor et al. [32] proposed

a data processing and feature extraction pipeline, the output of which was visualized

using an immersive display wall visualization system implemented with Unity. Sicat et

al. [256] presented DXR, a Unity-based toolkit to ease development effort for immersive

visualization applications. Fulmer et al. [89] presented a web-based immersive neuron

visualization system using Unity for exploration of online databases of neuron data using a

Hololens.

2.3.2.2 Scientific Visualization in the Browser

Information visualization applications using D3 [33], Vega [245], Vega-Lite [244], and

Tableau (formerly Polaris) [266] have become ubiqituous on the web, reaching millions of

users to make data more accessible and understandable. The web browser platform is key

to enabling this ubiquity, by providing a standardized, cross-platform environment through

which applications can be deployed to users. Similarly, the browser eases the process by

which users access an application and enhances security, removing the need to install and

trust additional packages on their system. Although the browser has been widely used

to deploy information visualization applications, this has not been the case for scientific

visualization applications.

Scientific visualization applications often rely on native libraries (e.g., VTK [249]), fast

floating point operations, large amounts of memory, and parallel processing or high-

performance rendering on the GPU or CPU. Porting the required native libraries and

rewriting the application to JavaScript is a significant undertaking, and does not address

the computational demands of the application. As a result, the majority of web-based

scientific visualization applications rely on a backend server to perform data processing

and visualization (e.g., [71, 140, 221, 228, 229]), or to stream reduced representations of the

data to reduce the demands placed on the browser (e.g., [134, 192, 251, 255]). Using a server

gives the application access to significant computational resources, at the cost of latency for

users and financial cost to the developer to run the servers. When considering a large-scale

42

deployment, for example, data visualization on the home page of the New York Times, the

cost of running sufficient servers to satisfy the large number of clients is a real concern.

Fully client-side applications move the computation and data to the client, where users

can interact with the data locally without added network latency or expensive backend

compute servers; however, client-side applications have access to much less compute and

memory capabilities.

Even with the browser’s prior limitations on graphics and compute capability, a number

of works have explored methods for deploying scientific visualization in the browser, either

through a client-server architecture [71, 140, 221, 228, 229] or by leveraging the capabilities

provided by WebGL [134, 192, 251, 255]. Mobeen and Feng [192] demonstrated a volume

renderer in WebGL that was capable of high-quality interactive volume rendering of small

data sets on mobile devices. Sherif et al. [255] presented brain browser, a browser-based tool

that enabled interactive visualization of large-scale neuroimaging data sets fetched from

a remote server. Potree, proposed by Schütz [251], enabled interactive rendering of large

LIDAR data sets in the browser through a rendering-focused octree data layout that was

streamed on demand from a remote server. Li and Ma [169, 170] proposed an approach to

perform parallel processing in the browser that leveraged the WebGL rendering pipeline to

implement a subset of data-parallel primitives. However, WebGL lacks support for compute

shaders and storage buffers, making the implementation of general high-performance

parallel primitives challenging.

To visualize large data sets, prior work has either streamed subsets of the data to clients

for rendering [251,255], or rendered the data remotely on a server and streamed the resulting

images [71, 140, 221, 228, 229]. Data streaming approaches are typically built on top of a

rendering-focused data layout that enables spatial filtering and multiresolution reads to

efficiently send reduced data to the clients from a server. Potree [251] leveraged a rendering-

focused multiresolution octree data layout on the server to send LOD representations

of large LIDAR data sets to clients that render the data using WebGL. Remote rendering

approaches allow the application to access arbitrary compute capabilities to process massive

data sets, although they can introduce challenges with latency and cost.

In a recent survey of web-based visualization, Mwalongo et al. [199] specifically men-

tioned latency and the lack of CUDA for GPU computing as key remaining challenges to

43

deploying scientific visualization in the browser. By leveraging WebGPU, applications that

rely on GPU computing can now be run locally on the client in the browser, eliminating the

cost of GPU virtual machines and latency. Access to powerful GPU capabilities can also ease

the implementation of more advanced latency-hiding techniques for hybrid client-server

applications.

2.3.2.3 Parallel Isosurface Extraction

Isosurface extraction is a classic and widely used scientific visualization algorithm,

which has received wide attention since the original marching cubes paper [179]. Livnat

et al. [175] and Cignoni et al. [51] proposed to accelerate isosurface computation by

skipping subregions that were known to not contain the isosurface based on the range

of values in the subregion, using a range k-d tree or interval tree to accelerate the search.

Approaches leveraging similar ideas for skipping regions, based on macrocell grids [213]

and k-d trees [99, 290], have been proposed for implicit isosurface ray tracing, allowing the

application to render the isosurface directly without storing additional vertex data.

A number of GPU parallel isosurface extraction algorithms have been proposed [52, 61,

70, 136, 172, 187, 248, 250] that accelerate computation by parallelizing the work over the

many cores of the GPU. GPU parallel algorithms typically process each voxel in parallel in

a thread, using data-parallel prefix sums [28] and stream compaction operations to output

the computed vertices into a single buffer. Early work achieved the compaction step using

HistoPyramids [70] and performed processing in the geometry shader; however, recent

works [61, 172] in CUDA have been able to leverage compute kernels for processing and

Thrust [15] for fast prefix sum and stream compaction kernels. However, existing algorithms

have been built on the assumption that the entire data set is able to fit in the memory of a

single GPU [52, 61, 70, 136, 172, 187, 248, 250], or be distributed among multiple GPUs on a

cluster [187], preventing their use on massive data sets on single workstations or the web

browser.

The block-based work decomposition proposed by Liu et al. [172] for isosurface extrac-

tion on the GPU is similar to the algorithm proposed in this dissertation for interactive

isosurface extraction in the browser. Liu et al. computed the value range of each block

and used this information to filter out blocks that did not contain the isovalue. They then

44

computed the number of vertices to be output by each block in parallel and performed

a prefix sum to compute the output offsets for each block. A second pass computed and

output the vertices for each voxel. Per voxel output offsets were computed using a prefix

sum within the thread group processing a block, eliminating the need to store per voxel

offsets or perform a global prefix sum. Within each block, vertices are computed using

Flying Edges [250]. However, Liu et al. assumed that the entire data set is stored in a single

3D texture and only used the block decomposition to accelerate computation. In contrast,

the approach presented in this dissertation does not store the full volume data. Instead, the

blocks required to compute the isosurface are decompressed and cached as needed using a

GPU-driven LRU cache.

2.4 In Situ Visualization

Early work on in situ visualization began over 25 years ago [108, 182, 214], although

it was referred to as “co-processing” [108], “computational steering” [214], or “runtime

visualization” [182]. In recent years, the increasing gap between FLOPs and I/O has

motivated research and adoption of in situ visualization in the simulation and visualization

communities [11]. A wide range of in situ visualization approaches have been proposed,

from simulation-tailored methods [17,103,235,306,307,319] to general purpose frameworks,

such as ParaView Catalyst [12,78], VisIt LibSim [47,302], ADIOS [177], and GLEAN [284,285].

These works have explored a number of strategies to integrate the visualization into the sim-

ulation, what manner of visualizations to produce, and what support for human interaction

should be provided, if any. Childs et al. [45] presented a unified terminology to describe

in situ visualization, to address the growing and conflicting terminology used to describe

various methods. This section first summarizes the terminology presented by Childs et

al. [45] (Section 2.4.1), which is then used to describe in situ work throughout the dissertation

and discuss illustrative examples from prior work. Based on this terminology, I adopt three

coarser terms that can be used to describe key aspects of how the visualization interacts with

the simulation: tightly coupled, data staging, and loosely coupled. Section 2.4.2 discusses

recent work on Tightly Coupled in situ methods, Section 2.4.3 discusses related work on

Data Staging in situ, and Section 2.4.4 discusses work on low overhead Loosely Coupled in

situ strategies.

45

2.4.1 The Terminology of In Situ Visualization

The In Situ Terminology Project [45] was a collective effort led by Hank Childs of

over 50 visualization experts to develop a consistent and unified terminology for in situ

visualization. The terminology project defined six axes along which an in situ visualization

method can be categorized. The axes described different aspects of how a technique is

integrated into the simulation, how it is operated, and what manner of outputs it produces.

2.4.1.1 Integration with the Simulation

The major axes along which in situ visualizations have been categorized in previous

work describe how the visualization is integrated into the simulation. Integration type

describes how the visualization methods are called by the simulation or otherwise integrated

into it. Proximity describes how close the visualization tasks are to the simulation data.

Access describes how the simulation makes data available to the visualization. Division of

execution describes how compute resources are shared by the visualization and simulation.

2.4.1.1.1 Integration type. The integration type axis is split into two main categories:

application aware and application unaware, each with a set of more specific subcategories.

Application aware approaches consist of typical methods for integrating in situ visualization.

An application aware integration can be bespoke, where a custom visualization method

tailored for the specific simulation is used [272, 306, 307, 319]; or through a dedicated appli-

cation programming interface (API) expressly for in situ visualization, such as Catalyst [78],

LibSim [302], or SENSEI [10]; or through a multipurpose API, where the visualization is

integrated into a data management library already used by the simulation, for example,

ADIOS [177] or GLEAN [284]. Bespoke integrations require little integration effort on the

part of the simulation, but can require significant effort from the visualization effort as each

new visualization method must be custom tailored to the simulation. Bespoke integrations

can potentially provide better performance, as the visualization is tailored specifically to the

simulation’s data structures. Dedicated APIs require that the simulation map its data to a

visualization layout used by the API (e.g., VTK). However, once this is done the simulation

has access to the wide range of visualization methods provided by the APIs. To reduce the

mapping cost, VTK provides zero-copy strided arrays to support a wide range of simulation

data layouts. Multipurpose API integrations require no integration effort for simulations

46

already using the repurposed data management API, and can provide additional flexibility

as to the proximity of the visualization.

Application unaware approaches integrate the visualization without modifying the

simulation’s code or that of any libraries it uses. An application unaware integration can

be done through interposition, where a shared library used by the simulation for data

management is replaced at runtime by another containing the visualization code [84], or

through inspection, where the same facilities used to implement debuggers are leveraged

to inspect the simulation memory and insert the visualization [83].

2.4.1.1.2 Proximity. The proximity axis describes how close the visualization is to

the simulation data, and is directly tied to how expensive it is for the visualization to gain

access to the simulation data. Proximity is best seen as a spectrum, where data access costs

increase as the visualization gets further from the simulation data. The closest configuration

is a same-process proximity, achieved by integrating the visualization directly into the

simulation code. A desirable benefit of same-process proximity is that the simulation and

visualization can operate directly on the same data. Same-process proximity is the proximity

employed in standard dedicated APIs [78, 302]. A slightly further configuration consists of

running the visualization in a separate process on the same nodes as the simulation, and

accessing the data by copying it over a shared memory mechanism [325]. To reduce the

impact of the visualization on the simulation, the visualization can be moved further away

and run on a separate set of nodes on the same HPC cluster [17], or even to an entirely

different HPC cluster [74]. In these more distant configurations, the data must be transferred

over the network from the simulation to the visualization, increasing transfer costs.

2.4.1.1.3 Access. The access axis describes how the simulation passes data to the

visualization, and is split into two main categories: direct and indirect. Direct access is

made when the simulation and visualization operate in the same logical memory space and

can share pointers with each other. Direct access can be further divided into shallow copy

or deep copy access, depending on whether the visualization just shares the simulation’s

pointers, or makes a separate copy of the data to work on. Indirect access is made when the

simulation and visualization do not operate in the same logical memory space, and pass

data by sending them over the network.

Access is closely related to proximity, a desirable aspect of running the visualization

47

in the same process as the simulation is that the data can be shared directly using direct

shallow copy access to avoid data copies. However, it is possible to combine off node

proximity with direct access through remote direct memory access via MPI or partitioned

global address spaces. Similarly, indirect access can be used with on node proximity to

decouple the simulation and visualization tasks.

2.4.1.1.4 Division of execution. The division of execution axis describes how com-

pute resources are shared between the simulation and visualization using two categories:

time and space. Time division runs the simulation and visualization tasks on the same

compute resources, where they must take turns executing. Time division is commonly

employed in same-process proximity configurations, after the time step is completed the

simulation calls into the visualization code, and does not continue until the visualization

completes. Space division divides the compute resources between the simulation and

visualization, dedicating a set of resources to each. Space division allows the visualization

to run in parallel to the simulation, for example, on a separate thread, process [235, 325], or

node [74]. Space division can also be used to reduce the impact the visualization has on

the simulation, by allowing the simulation to begin computing the next time step while

the visualization continues processing, or to move the visualization tasks to an entirely

different node to reduce memory pressure. Time division is typically employed by in situ

applications using Catalyst [78] or LibSim [302], as it does not require synchronization or

incur possible memory hazards between parallel tasks.

2.4.1.2 Operation Controls

The operation controls axis describes how the in situ visualization tasks can be controlled

or modified while the simulation is running. The axis contains two categories: automatic

and human in the loop, each with two subcategories. Automatic controls can be either

nonadaptive, where the visualization configuration is fixed when the simulation is started

and cannot be changed, or adaptive, where the visualization can be adjusted using, for

example, in situ triggers [161]. Automatic controls are well suited to the batch execution

mode employed on HPC clusters, and are typically the default mode for in situ visualization

tasks. Human in the loop controls allow the scientist to connect an application to the

running simulation to view or modify the visualization configuration. These controls can be

48

blocking, where the simulation must wait until the application is disconnected to continue,

or nonblocking, where the visualization runs in parallel to the simulation. Blocking methods

are typically employed in visualization configurations using same-process proximity, direct

access, and space division. For example, although they are typically used in an automatic

nonadaptive mode, both ParaView Catalyst [78] and VisIt LibSim [302] support attaching a

local client to the running simulation to inspect or modify the visualization. Human in the

loop systems can also be used to interactively adjust the simulation parameters to support

computational steering, as done in SCIRun [214].

2.4.1.3 Output Type

The output type axis describes the types of visualization products output by the in

situ visualization for use post hoc. The output type axis is defined by three categories of

possible outputs, subset, transform, or derived. Subset outputs save out some reduced

form of the raw data, by selecting a subregion of interest or performing a subsampling of

the data [306]. Transform outputs apply some form of transformation to the data before

outputting it, although they do not necessarily reduce the data in size. Derived outputs

create and output different representations of the raw simulation data, for example, images,

statistics, or particle traces. Derived outputs can be further divided into subcategories based

on whether the output size is fixed or proportional relative to the input. For example, image

databases [7, 142] are fixed in size relative to the input data size, as the desired visualization

parameters are set up front by the scientist. The size of a proportional output is tied to the

size or complexity of the input data, for example, isosurfaces or Merge Trees [17].

2.4.2 Tightly Coupled In Situ Visualization

Tightly coupled in situ visualization is characterized by same-process on-node prox-

imity, direct access and a time division of execution. Tightly coupled in situ allows the

visualization to directly share memory with the simulation to eliminate data copy costs,

and has been widely used in practice. From a practical standpoint, tightly coupled in situ

visualization is well suited to the batch execution model of current HPC systems, as the

visualization is performed as an additional fixed task within the simulation code. Tightly

coupled in situ visualization has been demonstrated as an effective approach for a range of

in situ visualization applications [7,23,77,80,116,129,142,159–161,182,214,218,219,223,271,

49

272, 298, 306, 307, 316, 317, 319, 321], and is the in situ modality provided by the standard

dedicated in situ APIs Catalyst [78] and LibSim [302]. The SENSEI [10] project was started

to address the portability and reusability challenges introduced by this growth of in situ

frameworks and visualization methods. SENSEI supports a range of execution modes

depending on the backend selected, although it is frequently used in a tightly coupled

mode.

Early work by Parker and Johnson [214] leveraged tightly coupled in situ visualization

to develop a fully integrated computational steering and visualization system, SCIRun.

SCIRun employed a dataflow based computational model and in situ visualization to

provide an intuitive and interactive interface that scientists could use to structure their com-

putation, inspect its progress, visualize results, and adjust the computational parameters

as needed. Ma [182] integrated a volume renderer into a computational fluid dynamics

(CFD) simulation to provide real-time simulation monitoring. The rendered images were

either saved to disk or sent to a remote client for display. However, the remote client did

not provide interactive controls to modify the visualization parameters.

Tu et al. [272] proposed a fully integrated meshing to visualization pipeline for large

finite element method (FEM) simulations. Tu et al. integrated the various stages of an FEM

simulation visualization pipeline (meshing, partitioning, simulation, and visualization),

into a single application, thereby eliminating the I/O bottlenecks that would otherwise have

occurred between these stages to improve overall performance. Yu et al. [319] demonstrated

the effectiveness of tightly coupled in situ visualization for rendering large combustion

data sets from S3D [114]. Yu et al. integrated a data-parallel renderer based on a 2-3

swap [320] compositor into S3D. Yu et al. evaluated their approach on up to 15,360 cores

and demonstrated that in situ rendering could be up to hundreds of times faster than

saving the data for post hoc visualization. Woodring et al. [306] presented an in situ data

reduction strategy for large cosmology simulations, based on constructing a multiresolution

k-d tree over the particle data. Woodring et al. built a k-d tree over the particles, and

duplicated a subsampling of the particles up the tree to provide LOD. To reduce the

amount of data saved, their approach discarded levels of the tree, using the coarser levels

to provide a representative subset of the data for post hoc visualization. Woodring et

al. [307] proposed an in situ eddy tracking approach that enabled high spatial and temporal

50

resolution tracking of eddies in large ocean simulations. Their approach detected eddies

by computing and thresholding the Okubo-Weiss field on each rank, after which eddies

were found by computing the connected components of the Okubo-Weiss field. Finally, a

global list of eddies was constructed and output for post hoc visualization by aggregating

the partial eddy statistics from each rank. Thompson et al. [271] presented an in situ

framework based on VTK-m [196] and SENSEI [10] to leverage the parallel computing

capabilities available on CPUs and GPUs. Larsen et al. presented Strawman [160] and its

successor ALPINE [159]. Both frameworks were designed to explore options for lightweight

and low-overhead tightly coupled in situ integrations that were capable of leveraging

parallel processing on CPUs and GPUs. Larsen et al. adopted a flexible JSON-based

data description model for low-overhead data description and VTK-m [196] for parallel

computation on CPUs and GPUs. Ibrahim et al. [129] presented an approach that leveraged

Jupyter notebooks for interactive in situ visualization through ALPINE’s Ascent run time.

A number of simulations have begun moving to an asynchronous many task (AMT)

runtime model for portability and performance [16]. This migration can pose a challenge for

tightly coupled in situ visualization methods that do not use the same runtime system, as it

can lead to scheduling or data management issues. Pébaÿ et al. [219] performed an initial

assessment of using Legion [13] as a runtime system for in situ computation of statistics

within a Legion-based simulation mini-app. Pébaÿ et al. [218] continued this effort further

and developed a SPMD model for computing statistics within the Legion runtime. Pébaÿ

et al. integrated their approach into a full-scale simulation, S3D [114]. Heirich et al. [116]

presented an approach to task-based in situ visualization using Legion [13] that allowed

the visualization to use the same runtime system as the simulation, for Legion-based

simulations. Petruzza et al. [223] proposed an embedded domain-specific language for

in situ visualziation, BabelFlow, that could integrate with different AMT runtimes for

portability.

A key limitation of in situ visualization is the loss of interactivity when viewing the

outputs post hoc. The visualization parameters used to produce the images are fixed when

the simulation is launched, and cannot be adjusted afterwards when viewing, e.g., the

output images. To recapture some of the interactive and exploratory capabilities provided by

post hoc visualization, work on in situ visualization has explored the creation of “explorable

51

extracts” [7, 23, 80, 142, 298, 316, 317, 321]. Such approaches output a set of images or other

proxy representations of the data that can be used to provide various levels of interactive

manipulation post hoc. Although such approaches are not specifically tied to a tightly

coupled configuration, they are typically employed in such a configuration. Yucong et

al. [321] proposed an approach that created layered images using a data-parallel renderer,

which could then be recombined interactively post hoc. Their approach took advantage of

the distributed nature of data-parallel rendering by saving the partial images rendered on

each rank containing color, depth, normals, and other information instead of compositing

them to a single final image. The partial images could then be reconstructed post hoc

to perform spatial clipping, transfer-function-based culling, and modify the camera or

light position. Kageyama et al. [142] and Ahrens et al. [7] proposed strategies based on

rendering a sweep of the desired visualization parameter space. The parameter sweep

could cover different isovalues, transfer functions, camera positions, and so on, to output a

database of images. The images could then be blended and combined post hoc in a viewer

to interactively adjust the various visualization parameters. Works by Fernandes et al. [80],

Biedert and Garth [23], Ye et al. [317], and Wang et al. [298] have leveraged various forms of

layered depth images to output explorable extracts. Rather than rendering a single image

containing just the objects nearest to the camera, multiple images are created, containing

objects successively further from the camera [23, 317]. In the case of volume rendering,

Fernandes et al. [80, 298] proposed to split the ray into segments to produce a layered

volume image. The layered depth images could then be explored interactively post hoc by

combining the multiple layers to create new views or filter out objects.

2.4.3 Data Staging In Situ

Data staging in situ is typically performed during the simulation’s I/O pipeline, and is

characterized by its use of a multipurpose API, a same-process subset-of-ranks proximity,

indirect access, and time division of execution. From the simulation’s perspective, I/O and

data transfer for in situ visualization share many similarities, making integrating in situ

visualization through the I/O library a valuable approach to integrate it without modifying

the simulation code. Although it is also possible to implement a tightly coupled system

through a multipurpose API by running the visualization immediately after the data are

52

passed to the I/O library on each rank, data staging in situ first aggregates the data to a

subset of ranks that then run the visualization. By decoupling the level of parallelism and

data distribution of the simulation and visualization, data staging can provide benefits over

a tightly coupled approach. For example, the visualization may need access to more data

than are available locally on each rank. By aggregating the data to form larger subregions

on fewer ranks for processing, the total amount of network traffic required can be reduced.

Similarly, the visualization code may not scale as well as the simulation, and running it on

a subset of ranks can actually improve overall performance [17].

Data staging in situ has been integrated into ADIOS [94, 177] and GLEAN [284], by

running the visualization on the aggregator ranks during the two-phase I/O pipeline.

Data staging in situ integrations within an I/O library is typically done by integrating a

distributed data management or query strategy [63, 68, 326, 327] to support visualization

tasks that require data from other ranks. These distributed data management libraries

work by leveraging the data and metadata provided to the I/O library to aggregate and

restructure the data to match the parallelism of the visualization process or to implement

an on-demand distributed data query mechanism.

DataSpaces [68] is a generic distributed data sharing library that has been used to

enable data staging in situ, among other methods. DataSpaces provides a shared virtual

memory space abstraction over the distributed simulation data. The distributed data

are indexed using a distributed hash table, which a query engine uses to answer spatial

subregion queries from clients. Client queries can request large regions to redistribute

the data on to fewer ranks, or small ghost regions as needed for processing. Bennett

et al. [17] demonstrated a combined tightly coupled and data staging in situ pipeline

for in situ Merge Tree computation in S3D [114] that used DataSpaces to stage data for

the Merge Tree computation. Zheng et al. [326] presented PreData, a data staging and

aggregation middleware within ADIOS for in transit visualization, that leveraged ADIOS’s

I/O metadata to describe the data. PreData uses a map-reduce stream processing pipeline

on the staging nodes to reduce memory overhead. PreData also integrates DataSpaces

to provide distributed data access for visualization tasks that required neighbor data.

FlexIO [327] repurposed the ADIOS file I/O API to enable data staging in situ, and to

allow flexible placement of the in situ visualization tasks. Simulations using FlexIO “write”

53

a stream file that is “read” by the visualization tasks. Reads can specify a different data

distribution among the subset of ranks running the visualization task to restructure the

data using FlexIO.

2.4.4 Loosely Coupled In Situ

Loosely coupled in situ is characterized by different process proximity, indirect access,

and a space division of execution. Loosely coupled approaches can run the simulation

and visualization on distinct nodes, reducing the impact of the visualization on the simula-

tion [74,148,325]. This separation is highly desirable when scalability or resource contention

is of concern, as is often the case in large-scale simulations. Furthermore, the visualization

component is free to run at a different level of parallelism than the simulation, or in parallel

to the simulation to perform additional computation [74, 195, 323, 325] or enable interactive

visualization [235]. The visualization can also be run on demand, starting and stopping as

desired in a separate process or job, based on, e.g., simulation triggers [161].

Early work by Haimes [108] presented pV3, which enabled interactive loosely cou-

pled visualization of large-scale CFD simulations. Haimes specifically selected loosely

coupled visualization, referred to as “co-processing,” to enable interactive visualization,

asynchronous execution of the simulation and visualization, and on-demand execution of

the visualization. pV3 could be run as desired by the scientist to connect and disconnect

from the simulation. When connected, new time steps were queried from the simulation and

rendered interactively on a distinct set of nodes while the simulation progressed. Ellsworth

et al. [74] presented a loosely coupled in situ visualization approach to render movies of

weather simulations in a sensitive environment for hurricane forecasting. Due to the time

sensitive nature of the application, it was critical to avoid slowing down the simulation

or introducing any chance of it crashing due to the visualization. Thus, Ellsworth et al.

adopted a loosely coupled approach and ran the visualization on a separate cluster to

render and distribute the videos. Zhang et al. [325] described a loosely coupled approach

for in situ feature tracking that ran the feature tracking tasks in parallel to the simulation

on the same nodes. Running the two processes on the same nodes allowed them to reduce

data transfer costs by directly sharing memory with the simulation, whereas keeping the

processes separate still reduced the computation’s impact on the simulation and allowed

54

it to be performed in parallel while the simulation continued on to the next time step.

Rizzi et al. [235] coupled LAMMPS [225] to vl3 to enable interactive in situ visualization

of molecular simulations. The time division of execution employed in loosely coupled

visualization allowed the scientist to interactively explore the data set while the simulation

progressed. Zanúz et al. [323] proposed a stream-processing-based approach that leveraged

tools from the big data community to construct the pipeline. Their approach built on

ZeroMQ for communication, Apache Flink for stream processing, and Apache HBASE for

storage. Loring et al. [180] presented an approach to reduce the amount of data that must

be transferred for loosely coupled in situ visualization by taking into account metadata

from the simulation. Their approach leveraged information about the value range of data

on each rank or its spatial position to skip sending data not needed for the visualization

being performed. For example, when computing an isosurface, their approach could skip

transferring simulation data that did not contain the isovalue.

Loosely coupled in situ visualization can also be realized using a multipurpose API to

ease the process of moving post hoc visualization tasks to run in situ [63, 327]. Rather than

merging the tasks into the simulation, which could require extensive code modifications

to both or degrade simulation performance due to scaling or memory use issues, the

visualization tasks can be run in a separate process and open a “file” to establish a connection

with the running simulation. Reads performed on this file are then mapped to data requests

over the network from the running simulation. FlexIO [327] was designed to transparently

provide flexibility as to where the visualization tasks were run, and can also be used to

enable loosely coupled visualization through the same stream file approach discussed

above for data staging. Rather than run the visualization tasks on a subset of the simulation

ranks, they are run in a separate process. The information in the stream file is then used

to establish network connections between the two processes to transfer data. Dayal et

al. [63] adopted a similar strategy in FlexPath, and repurposed the ADIOS file I/O API for

both the simulation and visualization to establish network connections between the two.

FlexPath used a publisher/subscriber model that allowed visualization tasks to subscribe

to data updates from the simulation or other visualization tasks to build loosely coupled

visualization pipelines.

CHAPTER 3

ADAPTIVE I/O AND DATA LAYOUT

Particles are widely used in the simulation community to model dynamic and nonuni-

formly distributed media (see, for example, [21, 105, 225, 259, 260]), due to their ability

to handle large dynamic ranges and contact discontinuities often found in cosmology,

molecular dynamics, or free-surface and disperse multiphase fluid dynamics. Particle

populations in these simulations often span large ranges of space, where localized groups

of particles may represent clustered galactic masses, atomic features, or fluid droplets.

Although using particles improves the simulation’s ability to model these phenomena, the

unstructured nature and nonuniform distribution of the particles pose challenges to the

I/O system. Post hoc visualization tasks are also made more challenging when forced to

work on the raw particle data output by standard I/O strategies, which do not include the

spatial or attribute metadata needed to accelerate visualization queries.

This chapter presents work on two-phase I/O techniques for spatially aware adaptive

aggregation of particle data [154, 276]. The presented techniques provide different levels of

adaptivity to the particle distribution, enabling them to adjust the I/O strategy to balance the

workload on different nonuniform particle distributions. This load balancing is performed

during data aggregation in a two-phase I/O pipeline. The amount of data aggregated to a

single file can also be adjusted by the simulation to tune the I/O strategy to achieve high

bandwidth writes across different HPC systems. Finally, to enable particle simulations to

output a data layout that is directly usable for visualization, a low-overhead data layout

is proposed that can be constructed quickly during the I/O pipeline. The I/O strategies

proposed are also capable of high bandwidth reads on the proposed data layout to enable

fast checkpoint restart reads or parallel visualization tasks.

Section 3.1 discusses a new adjustable uniform grid (AUG) aggregation strategy. The

AUG strategy incurs little computational overhead during aggregation by employing a

56

uniform aggregation pattern, although it can adjust to a subset of nonuniform particle

distributions encountered in simulations. Section 3.2 discusses a new adaptive aggregation

strategy using an aggregation tree. The aggregation tree strategy can adjust the aggregation

subgroup assignment to adjust to a wide range of nonuniform particle distributions to

achieve balanced I/O workloads, at the cost of some additional computation. Section 3.3

discusses a new data layout that allows simulations to output the particle data in a layout

that is directly usable for accelerating spatial and attribute queries in post hoc visualization.

The proposed data layout is built on a combination of k-d trees and bitmap indexing

to support such queries with low memory overhead, and can be constructed quickly

in distributed parallel environment during I/O. Finally, Section 3.4 demonstrates the

scalability and portability of the proposed I/O strategies on uniform and nonuniform

particle distributions, and Section 3.5 demonstrates the performance of the proposed data

layout on visualization queries.

3.1 Spatially Aware Two-Phase I/O Using an
Adjustable Uniform Grid

There are two main challenges when designing a spatially aware I/O strategy: how to

create a mapping between the location of a particle in the domain and its location in the file,

and how to use this mapping to design an efficient data aggregation phase. For regular grid

data there exists a direct one-to-one mapping between a voxel’s 3D position in the domain

and its location in the file. Such mappings can be produced with various ordering schemes.

Common ones used in practice for grid-based data are row-major, Morton order [197] (also

referred to as Z-order), and HZ-order [216]. However, the unstructured and unbalanced

nature of particle data makes it challenging to construct a similar mapping in general.

The aggregation phase is also made more challenging for particle data. In contrast to

regular grids, where a fixed number of voxels occupy each spatial region, particles move

dynamically through the domain and do not have a fixed spatial distribution that can be

determined a priori.

This section presents one approach to tackling these problems, using an adjustable

uniform grid (AUG). The approach begins by imposing a 3D rectilinear grid over the

simulation domain, referred to as the adjustable uniform grid. The AUG divides the

domain into disjoint aggregation partitions where each particle falls into a unique partition.

57

Each partition is then assigned to a rank that acts as the aggregator for the particles within

the partition. Each rank sends its particles to the aggregator rank that owns the partition

it falls within, after which the aggregators output a file containing the received data. The

AUG can be adjusted to tune the number of ranks that fall in to a single partition, and

repositioned or scaled to filter out subregions of the domain that do not contain particles.

3.1.1 Parallel Writes

An overview of the proposed parallel write pipeline on a 2D uniform grid simulation is

shown in Fig. 3.1. The simulation partitions the compute workload into patches using a grid,

where some number of particles exist in each patch. In the aggregation step, a uniform grid

is imposed over this domain to produce four aggregation partitions. One rank is assigned

to act as the aggregator for each partition, and receives the particle data that fall within

its region. After receiving the particle data, the aggregator can reorganize the particles to

construct visualization tailored data layouts if desired. The resulting data layout, or the raw

particle data, is then written to disk independently by each aggregator. Finally, a metadata

file containing an index of each aggregator’s output file and its spatial location is created

and output by rank 0. The I/O pipeline is broken down into the following steps, discussed

Partition ranks using
a 2×2 Grid

Data Files

Rank: [particles]
R0: [P

1
, P

2
, ..., P

R0
]

...
R15: [P

1
, P

2
, ..., P

R1
]

Aggregator Rank: [aggregated particles]
AR0: [P

1
, ..., P

R0
, P

1
, ..., P

R1
,

 P
1
, ..., P

R4
, P

1
, ..., P

R5
]

...
AR3: [P

1
, ..., P

R10
, P

1
, ..., P

R11
,

 P
1
, ..., P

R14
, P

1
, ..., P

R15
]

AR0: [P
1
, ..., P

n
]

...
AR3: [P

1
, ..., P

m
]

(a) Spatially-Aware Aggregation
(b) Data Reorganization

for LOD
(c) File I/O

Metadata File

Fig. 3.1: An overview of the adjustable uniform grid two-phase I/O strategy. (a) An
adjustable uniform grid is imposed over the simulation domain to partition the domain
into the aggregation subgroups. An aggregator rank is assigned to collect the data for each
subgroup, and those ranks whose data fall into each partition send their data to the assigned
aggregator. After receiving the data, (b) the aggregator reorganizes the data into a layout
better suited to progressive level-of-detail reads and (c) writes the data to disk. Finally, a
spatial index of the individual files is created on rank 0 and written to disk, containing the
bounds of each file and its location on disk.

58

in the sections below:

• Adjustable uniform grid aggregation (Section 3.1.1.1)

• Data reorganization for LOD reads (Section 3.1.1.2)

• Aggregator data output (Section 3.1.1.2)

• Construction of top-level spatial metadata (Section 3.1.1.3)

3.1.1.1 Adjustable Uniform Grid Aggregation

The first step in the I/O pipeline is to compute and impose the adjustable uniform grid

over the simulation domain to create the aggregation partitions. The AUG is constructed

based on an aggregation partition factor (APF), (Px, Py, Pz). The APF defines the integer

size ratio of a cell in the AUG to the simulation patch size in x, y, and z, respectively. For

example, in a 2D simulation with a grid of 1× 1 patches distributed among nx × ny ranks,

each aggregation partition would cover Px× Py ranks (Fig. 3.2). The APF adjusts the number

of ranks that are grouped together during aggregation to form each aggregation subgroup,

and thus is used to tune the amount of network communication performed and the size

of the output files. Given a simulation with grid of nx × ny × nz ranks, the total number

of files output would be f = (nx/Px)× (ny/Py)× (nz/Pz). For example, selecting (1, 1, 1)

would result in a file per process I/O strategy, whereas selecting (nx, ny, nz) would yield a

single-shared file. APFs in between these extremes result in various levels of aggregation

and files output. The best partition factor depends on the HPC system’s network and

filesystem, and the level of parallelism used to run the simulation, and is left exposed as a

tuneable parameter for portability.

(a) Simulation (d) (2, 1) (e) (4, 1)(b) (1, 1) (c) (2, 2) (f) (4, 4)

Fig. 3.2: The aggregation partition factor can be tuned to adjust the amount of communica-
tion that takes place during aggregation and the number and size of the output files. (a)
The simulation is partitioned using different APFs: (b) (1, 1), (c) (2, 2), (d) (2, 1), (e) (4, 2),
and (f) (4, 4).

59

After selecting the APF, the aggregation grid is computed and imposed on the domain.

In the case of grid-based simulations, the use of an integer size ratio respective to the

simulation’s patch size allows the grid to avoid splitting a rank’s data between different

partitions. Avoiding splitting the data on a rank is highly desirable to improve data transfer

performance. If a rank’s data are split into multiple partitions, the rank must divide its

particles into separate buffers for each partition before the data can be transferred. The cost

of this step is linear in the number of particles on the rank as it requires a loop over them to

separate them. In the case of non-grid-based simulations, avoiding partitioning the data on

a rank between multiple aggregators may not be possible.

Once the aggregation grid is constructed, the next step is to select a rank to act as the

aggregator for each partition. Each aggregator rank is responsible for receiving the particle

data contained within the assigned aggregation partition. The aggregator ranks are chosen

uniformly from the simulation ranks to ensure even utilization of the network. Although

this does mean a rank may be assigned as the aggregator for a partition that does not

contain its own data, this approach ensures a more even distribution of work over the

network [152].

Each aggregation group then transfers its data to the assigned aggregator. However, in

contrast to grid based simulations, where the number of voxels on each rank is fixed and

known, each aggregator does not know how many particles to expect from each rank in its

partition. Thus a metadata exchange must be performed within each aggregation group

to compute the number of particles the aggregator will receive from each rank. If the APF

is an integer scale of the underlying simulation grid size, each rank will send its data to a

single aggregator. Thus the number of particles is just the number of particles on that rank.

In the case that a rank’s data are split among different aggregation partitions, it must first

locally partition the data and send the number of particles in each partition, after which it

can transfer the particles. After receiving the number of particles to expect from each rank,

the aggregator allocates a buffer large enough to hold the entire set of particles and receives

the data from each rank into this buffer. Nonblocking point-to-point MPI communication is

used for both the metadata and data exchange.

Although the aggregation partitions are based on a uniform grid, it is possible to adjust

the grid somewhat to achieve better load balance on some nonuniform particle distributions

60

(Fig. 3.3). For example, in material point method simulations in engineering, the particles

represent solid objects, and do not scatter around freely in the domain as they do in

cosmology or molecular dynamics. As a result, large portions of the domain do not contain

any particles. By inspecting the number of particles on each rank before constructing

the aggregation grid, the grid can be adjusted to cover just the subdomain occupied by

the ranks with particles (Fig. 3.3a). Ranks that fall outside the aggregation grid do not

participate in the rest of the I/O pipeline. However, as the partitioning is based on a dense

grid, it cannot discard empty ranks (Fig. 3.3b) or even empty partitions (Fig. 3.3c) within

the covered domain. Although these empty regions are still placed in an aggregation group,

the aggregator can easily determine that no particles are contained within its partition and

skip the subsequent aggregation and data output steps.

3.1.1.2 Data Reorganization for LOD Reads and Output

After the particles have been collected on their respective aggregators they can be

reorganized to construct a visualization tailored data layout. To reduce the compute

requirements of the proposed I/O pipeline and avoid introducing memory overhead, a

(b)(a) (c)

Fig. 3.3: The AUG can be adjusted to adapt to a subset of nonuniform particle distributions
encountered in practice. (a) If only a subset of ranks has particles in the domain, the grid
can be adjusted to partition only this subset of ranks. (b, c) However, the grid cannot
adapt to other distributions of particles that require partitioning the entire domain, even if
some ranks do not contain particles or contain fewer particles than others. Although data
transfers from ranks without particles are skipped in (b, c), the I/O workload across the
aggregators is unbalanced. The empty aggregation group in the top-left of (c) is able to skip
the data aggregation step and does not output a file.

61

minimal layout is built that provides support for only low-latency multiresolution reads.

The layout used is similar to that proposed by Rizzi et al. [236], and is constructed by

randomly reordering the particles on each aggregator. The particles can then be read

incrementally from the start of each file. Each LOD l corresponds to a set of P · sl particles,

where P is the number of particles to treat as the first LOD, and s is a resolution scale

factor that can be used to adjust how quickly the number of particles in each level grows

(s defaults to 2). As the visualization layout is a simple reordering of the data, it requires

no additional memory to store and can be constructed quickly and independently on each

aggregator. It is also possible to construct more complex data layouts at this stage if desired,

as discussed in Section 3.2. Once the data layout has been constructed, each aggregator

outputs its particles to an independent file.

3.1.1.3 Construction of Top-Level Spatial Metadata

To allow the independent files output by each aggregator to be treated as a single file

by visualization applications, the final step of the I/O pipeline outputs a spatial metadata

file. The metadata file stores a list of bounding boxes corresponding to the bounds of each

aggregator’s partition and a reference to the file file containing the data for the partition

(Fig. 3.4). Rank 0 collects the bounds of each aggregator’s partition and writes the spatial

metadata file. Post hoc visualization tasks then open this metadata file and use the index

to find the other files containing the required data. Visualization tasks can use the spatial

metadata to skip reading files that do not contain data required for the task being performed,

for example, when processing just a subregion of the domain.

3.1.2 Parallel Reads for Visualization

The presented I/O strategy and data layout provide two key properties that enable

scalable reads for visualization queries on smaller clusters and workstations. First, the

two-phase I/O strategy outputs far fewer files than typical file per process approaches,

and can be configured to output the ideal number of files for the target system. Fewer

output files also improve read performance for post hoc visualization tasks, which must

access far fewer files to load the data for processing, thereby reducing the overhead that

would be incurred by accessing many small files. Second, the spatially coherent data layout

output by the I/O pipeline allows visualization tasks that operate on spatial subregions

62

Data Files

(0, 0)

(2, 2)

FileAR0 FileAR4

FileAR8 FileAR12
Metadata File

Box # Agg. Rank Bounds

0 0 [(0, 0), (1, 1)]

1 4 [(1, 0), (2, 1)]

2 8 [(0, 1), (1, 2)]

3 12 [(1, 1), (2, 2)]

Fig. 3.4: The top-level spatial metadata file output by rank 0 at the end of the I/O pipeline
file allows accessing the set of files output as a single file. The metadata provides the bounds
of each subregion and a reference to the corresponding output file. The spatial information
can be used to accelerate spatial queries by skipping files not contained in the query.

to perform more efficient reads on the data. When accessing a spatially coherent data set,

the visualization process can use the spatial metadata to find and access just those files

containing the data required for the subregion of interest. Moreover, as the files contain

convex subregions, the number of files that must be accessed scales predictably with the

size of the subdomain being queried. However, as each rank must independently read the

files containing its data, this approach may encounter issues when used for checkpoint

restart reads at large levels of parallelism.

3.2 Spatially Aware Two-Phase I/O Using an
Aggregation Tree

The key limitation of the AUG strategy is that it cannot provide the adaptivity needed

to load balance the variety of nonuniform particle distributions encountered in practice. In

simulations where the particles occupy the entire domain, but with varying density, the

AUG approach is unable to adapt (Fig. 3.3). Similarly, although the AUG approach can

determine that an aggregation group does not contain any particles and skip the aggregation

and output steps of the pipeline, the existence of empty or variable size aggregation

groups leads to an imbalanced I/O workload and underutilization of the I/O system (see

cases Fig. 3.3b,c). Such nonuniform distributions of particles can occur in simulations

where the particles move freely throughout the domain, for example, disperse multiphase

Lagrangian-Eulerian techniques [91] and partitioned multiphysics methods [324].

63

This section presents work on a portable technique for scalable, spatially aware adaptive

aggregation that is capable of adapting to a wide range of nonuniform particle distributions.

The presented technique employs a k-d tree [18] partitioning of the domain to produce

aggregation groups with similar numbers of particles. Compared to other widely used

adaptive spatial data structures, e.g., octrees, BSP-trees, the k-d tree provides a good balance

between spatial adaptivity and construction cost [241]. The k-d tree used to load balance the

I/O workload, referred to as the aggregation tree, is built over the ranks’ spatial bounds and

constructed to produce leaves that contain similar numbers of particles. The ranks within

each leaf of the tree form an aggregation group for I/O. The aggregation tree partitioning is

able to achieve better I/O load balance across the aggregation groups compared to the AUG

approach discussed previously. On nonuniform and time-varying particle distributions, the

aggregation tree can achieve up to 2− 2.5× faster writes and 3× faster reads compared to

the AUG (see Section 3.4.2).

3.2.1 Parallel Writes

An overview of the proposed two-phase I/O pipeline is shown in Fig. 3.5. Each write

proceeds as follows: All ranks send their particle counts and domain bounds to rank 0,

which constructs the aggregation tree (Fig. 3.5a, Section 3.2.1.1). Each leaf in the tree contains

a set of ranks with a similar total number of particles and is assigned to an aggregator

rank responsible for receiving the data in the leaf and writing it to disk. Each rank sends

A

B

C

A

6

0

2 4

B

C

6

0

2

4
A

B

C

(a) Adaptive Aggregation Tree Construction
& Aggregator Assignment

Gather particle
counts to rank 0 Adaptive Aggregation

Tree Leaves

Aggregator Leaf
Rank Assignment

(b) Data Transfer

(c) Data Layout
Build & Write

(d) Top-Level Metadata
Construction

Fig. 3.5: An overview of the adaptive two-phase I/O pipeline using an aggregation tree. (a)
Given the number of particles on each rank, rank 0 constructs the aggregation tree to create
leaves with similar numbers of particles. Each leaf is assigned to a rank responsible for
aggregating the data and writing them to disk. (b) Each rank sends its data to its aggregator.
(c) Each aggregator constructs a multiresolution data layout and writes it to disk. (d) The
aggregators send their local attribute ranges and their root node bitmaps to rank 0, which
populates the aggregation tree with the bitmaps and writes it out.

64

its local data to the aggregator for the leaf containing it (Fig. 3.5b). After receiving the

particles for the leaf, the aggregator constructs and writes out a multiresolution data layout

(Fig. 3.5c, see Section 3.2.1.2). Next, a top-level metadata file is populated rank 0 that

contains the aggregation tree and references to the leaf files written by the aggregators

(Fig. 3.5d, Section 3.2.1.3). The I/O library implementing the proposed approach provides a

C API to allow integration into simulations written in a range of programming languages.

The API follows an array-based attribute storage model similar to HDF5 [115], ADIOS [177],

and Silo [163].

3.2.1.1 Adaptive Aggregation with an Aggregation Tree

The aggregation tree is constructed by first gathering each rank’s bounds in the sim-

ulation domain and the number of particles it owns on rank 0 (Fig. 3.5a). Rank 0 then

performs a modified k-d tree build to construct the aggregation tree. The tree is built

so that each leaf of the aggregation tree contains a similar number of particles. As the

actual particle distributions within each rank are unknown, the tree build is restricted

to select split positions that lie on rank boundaries. Not splitting a rank’s data between

multiple aggregators also reduces the data processing and transfers that take place during

aggregation.

The tree is built with the goal of producing subtrees, and thus leaves, with roughly

equal numbers of particles. To do so, a split position must be found at each level that

partitions the ranks such that a similar number of particles fall into each subtree. To do so,

the builder selects the longest axis of the aggregate bounds of the current set of ranks that

have particles and finds a set of candidate split positions to test. The candidate splits are

the unique edges of each rank’s bounds along the chosen splitting axis. For each candidate

split, the builder determines which ranks would fall into the left and right subtrees and

compute the corresponding number of particles in each subtree, nl and nr, respectively. The

cost of the split measures how uneven the partitioning is, c = |0.5− nl/(nl + nr)|. Each

candidate is tested to find the one with the minimum cost which is selected as the splitting

plane. After partitioning the ranks, this process is repeated to construct the subtrees. The

tree construction is parallelized top-down using Intel TBB. A task is spawned to construct

the right subtree, while the current thread proceeds with the left. Users can also optionally

65

configure the tree to find and use the best split plane across all spatial axes. In some cases

the best split is not along the longest spatial axis, for example, in Fig. 3.5a the split plane B is

chosen based on the longest axis, but does not produce the most even partitioning possible.

A leaf node is created when the amount of data contained within the current node

falls below a user-specified target file size. Each leaf in the tree corresponds to a file that

will be written to disk, containing the data of the ranks within the leaf’s bounds. The

target size determines the size and number of the output files and the amount of network

traffic during the aggregation phase. Lower sizes output more smaller files with less data

transferred; larger sizes output fewer larger files with more data transferred. The best size

varies across HPC systems and scales, and is exposed as a tunable parameter for portability.

The improved load balancing achieved by the aggregation tree is illustrated in Fig. 3.6.

To avoid forcing the creation of extremely imbalanced leaves to satisfy the target file

(b)(a) (c)

Fig. 3.6: The aggregation tree is able to adapt to nonuniform particle distributions to achieve
a balanced I/O workload. Each tree is constructed with a target leaf size of ≈22 particles.
The square leaf nodes correspond to the aggregation subgroups. (a) The aggregation tree
computes a similar set of aggregation groups as the aggregation grid on uniform subregion
cases (compare to Fig. 3.3a). As with the aggregation grid, ranks without particles do not
send data during aggregation. Ranks without particles are also not included when selecting
splitting positions. (b, c) The aggregation tree build places a similar number of particles in
each subtree to produce aggregation groups with similar numbers of particles, and thus
a balanced I/O workload. The aggregation grid is unable to achieve a well-balanced I/O
workload in these cases (compare to Fig. 3.3b, c).

66

size, the tree can be configured to allow the creation of “overfull” leaf nodes. An overfull

leaf is created when the minimum split cost exceeds a user set threshold, and the current

data size is within a user set factor of the target size, balancing between avoiding bad splits

and creating excessively large files. The target size can also be exceeded if a single rank

exceeds it, as data within a rank are not partitioned.

To ensure even utilization of the network, leaves are assigned aggregators evenly across

the rank space [152]. Although this assignment does not ensure that each aggregator is

contained in its assigned leaf, it provides better work distribution for the aggregation stage.

For example, ranks on the same node likely operate on neighboring regions of the domain.

If this region is densely populated with particles, more leaf nodes will be created and

assigned to be aggregated by ranks on the node, leading to oversubscription. Similarly,

nodes with ranks in less populated regions would be underutilized.

Rank 0 then scatters to each rank its assigned aggregator ID and the number of particles

that it will receive if it is an aggregator, or zero if not. Each aggregator is also sent a list

of the ranks that it is assigned to receive data from and the number of particles on each

assigned rank.

Finally, each aggregator allocates buffers to store the particles it will receive and their

attributes, and posts nonblocking receives for each rank in its leaf. Each rank sends its data

(if any) to its assigned aggregator by initiating nonblocking sends (Fig. 3.5b). If a rank does

not have particles, the data transfer is skipped. Subcommunicators are not created for leaf

aggregation groups as the rank assigned to receive data for the leaf may not be contained in

the leaf, and thus must simultaneously participate in a different, disjoint group.

3.2.1.2 Construction of a Multiresolution Data Layout on
the Aggregators and Output

After receiving the particles on each aggregator, the multiresolution data layout de-

scribed in Section 3.3 is constructed on each aggregator (Fig. 3.5c). This data layout, the

binned attribute tree (BAT), is then readily available for in transit visualization and analysis

executed on the aggregators, providing support for accelerated spatial and attribute queries.

Each aggregator then writes its BAT to an independent file.

67

3.2.1.3 Construction of Top-Level Metadata

The final step in the I/O pipeline is the population of a top-level metadata file on rank

0 (Fig. 3.5d). Each leaf in the tree stores its aggregator rank ID, which is used to locate

the corresponding file written by the aggregator containing the leaf data. The top-level

metadata file allows read access to the entire data set as if it were a single file, transparently

supporting spatial and attribute queries and multiresolution reads on the entire data set. We

gather the attribute ranges and bitmap indices of each aggregator’s root BAT node to rank

0, which populates the corresponding leaf nodes in the aggregation tree. Each aggregator’s

bitmap indices are remapped from its local range to the global attribute range. The bitmaps

of the aggregation tree’s inner nodes are computed by merging the bitmaps bottom-up from

the leaves.

3.2.2 Parallel Reads

An equally important requirement for a parallel I/O library is that it provide high-

bandwidth reads for fast checkpoint restart reads. A two-phase parallel read pipeline that

mirrors the parallel write pipeline is used to provide scalable reads on the aggregated data

output in Section 3.2.1. The read pipeline proceeds as follows: first, all ranks read the

6

0

2

4

A

6

0

2 4

B

C

(a) Assign Read
Aggregators (c) Data Transfer

B

C

A

(b) Find Overlapped
Leaf IDs

Fig. 3.7: An overview of the parallel read pipeline. (a) All ranks read the aggregation tree
metadata, and a subset is selected to act as read aggregators. (b) Each rank determines
which leaves it overlaps, and (c) requests data from the aggregator(s) assigned to the leaf
file(s).

68

aggregation tree metadata, and a subset of ranks is assigned to act as read aggregators

(Fig. 3.7a, Section 3.2.2.1). Each rank then determines which leaves it overlaps (Fig. 3.7b)

and requests data over the network from the read aggregators for these leaves (Fig. 3.7c,

Section 3.2.2.2). The read API provided by the library implementing the proposed approach

mirrors the write API, with corresponding getters instead of setters to retrieve the data.

3.2.2.1 Assignment of Read Aggregators

Each rank reads the aggregation tree metadata file to determine the number of leaf files

and the spatial bounds of each leaf (Fig. 3.7a). Each leaf file is then assigned to a read

aggregator responsible for reading the file. The read pipeline is not in control of the number

of leaf files, as this is set when writing the data. If there are more ranks than files, read

aggregators are assigned as in the write phase, spreading them evenly through the rank

space to distribute work over the nodes. If there are fewer ranks than files, the files are

assigned evenly among the ranks, with each rank a read aggregator for some set of files.

Providing this flexibility in read aggregator assignment allows for scalable reads of data

written at much larger or smaller core counts than the reading process. The read aggregator

assignments are computed locally on each rank, producing a map of which files will be

read by each rank.

3.2.2.2 Fetching Data from Read Aggregators

Each rank queries the aggregation tree to get back a list of leaf IDs that overlap its

bounds (Fig. 3.7b), and uses the read aggregator assignment map to send its bounds to the

read aggregator assigned to each leaf. Upon receiving a bounds query, the read aggregator

performs a spatial query on its leaf files and returns the particles (Fig. 3.7c).

As was the case for writes, it is not possible to create aggregator subcommunicators to

transfer the data during reads. For example, the rank responsible for reading a leaf file

may not require data from that leaf, or when reading with fewer ranks than files, each rank

may need data from multiple other ranks. Instead, the read pipeline uses a client-server

data query system implemented with nonblocking MPI calls. Each read aggregator acts as

a data server and watches for incoming queries to process. To receive its data, each rank

collects the number of particles that will be returned by each query and allocates a single

buffer to contain them, and then uses nonblocking receives to write the particles directly

69

into this buffer. After a rank has received its particles, it calls a nonblocking barrier and

continues the server loop to handle additional queries. When the barrier is completed, all

ranks have received their data and the read is complete. If a rank requires data from itself,

it performs these queries locally after exiting the server loop. This query mechanism can

also be leveraged to enable distributed data access for in situ visualization.

3.3 The Binned Attribute Tree Particle Data Layout

This section discusses the proposed visualization-focused particle data layout, the

binned attribute tree (BAT). The BAT layout builds on ideas from both rendering- and

attribute-query focused data layouts, with the aim of providing a layout that can reasonably

satisfy the demands of both tasks. Moreover, the layout is specifically designed to be

constructed quickly in parallel during the I/O pipeline to be output instead of the raw

data, eliminating the need for post hoc data conversion. The binned attribute tree consists

of a spatial k-d tree with additional metadata stored at each node (Fig. 3.8). The tree

nodes are augmented with bitmap indices [309] to accelerate attribute subset queries,

and the tree is stored in a memory layout optimized for fast progressive multiresolution

reads. To support progressive multiresolution reads, each inner node stores a fixed number

of LOD particles to provide a coarse representation of the subtree. The low memory

overhead of the k-d tree [18, 241], combined with its support for flexible refinement, fast

parallel construction [144], and its ability to be augmented with additional metadata for

attribute-based filtering and LOD, make it a useful foundation for the data layout when

compared to grid-, cluster- or octree-based hierarchies.

3.3.1 Spatial and Attribute Query Filtering

As the BAT layout is fundamentally a spatial k-d tree built over the particles, it inherently

supports efficient spatial subregion queries. To accelerate attribute subset queries, each

node tracks a set of bitmap indices [309] representing the values contained in its subtree

and LOD particles (if any). Bitmaps representing user attribute queries are tested against

the node bitmaps during traversal to determine if the subtree contains the desired values.

In contrast to traditional bitmap indexing approaches [258, 308, 309], where the size of the

bitmap can vary as desired at the cost of memory (e.g., to bin real values more accurately),

the bitmaps stored in the BAT are restricted to be 32 bits each. Besides this size restriction,

70

A

B

Treelet within a shallow leaf

A
LOD Particles

B
LOD Particles

Bitmap Indices

Treelet

Shallow Tree
Inner Node

Fig. 3.8: The binned attribute tree layout. Treelets are built within the leaves of a shallow
k-d tree to parallelize tree construction. Nodes track a bitmap index for each attribute (green
and yellow bitmaps) to accelerate attribute queries. Treelet inner nodes store LOD particles
sampled during construction for multiresolution reads.

the layout uses a standard binned equality encoding to represent the bitmaps [309]. Integer

valued attributes are binned in the same manner. Each bit in a bitmap corresponds to a bin

covering 1/32 of the attribute’s value range. A bin is set if a particle’s value is contained in

the bin. Bitmaps can be combined using a bitwise OR and tested for overlap by checking if

their bitwise AND is nonzero, making such operations fast to perform.

Although restricting the size of the bitmaps reduces the resolution of the binning, it

provides two key benefits for reducing memory overhead. First, the bitmaps occupy

a predictable and small amount of memory compared to unrestricted approaches. The

bitmaps computed in unrestricted size approaches can require 30% [268] to 66% [49] of

additional storage for the bitmap index; in some cases the index can approach the original

data in size [40,48] or exceed it [313]. Second, it is now possible to build a bitmap dictionary

over the entire set of bitmaps in the tree, significantly reducing the number of unique

bitmaps that must be stored. Although the value ranges of the attributes may differ widely,

the corresponding bitmaps are frequently shared. As the BAT is constructed independently

on the aggregator ranks during I/O, the bitmaps are computed relative to the local attribute

range of particles on the aggregator, instead of the global attribute range. The attributes of

interest stored on the particles are often spatially correlated (e.g., pressure, temperature,

velocity, strain). As a result, the local attribute range is likely to be a subset of the global

71

range, allowing for finer bin sizes and in turn better filtering accuracy.

3.3.2 Parallel Construction

The tree will be constructed on a potentially large number of points on each aggregator

during I/O, and its performance is critical to the overall I/O pipeline. The tree is built

in two parallel steps: a data-parallel bottom-up build that constructs a shallow k-d tree

(Section 3.3.2.1) and top-down treelet builds within the leaves of the shallow tree (Sec-

tion 3.3.2.2). These steps are executed in parallel to each other and are parallelized internally.

After construction the tree is compacted to build the shared bitmap dictionary and written

in a layout optimized for fast multiresolution reads (Section 3.3.2.3).

3.3.2.1 Bottom-Up Shallow Tree Construction

The shallow tree is built bottom-up using Karras’s parallel k-d tree construction algo-

rithm [144], which builds the entire tree in parallel, with a small modification to the input set

to construct a shallow tree. Karras’s algorithm works as follows: the Morton code [197] of

each particle is computed and placed into a sorted array, forming the leaf nodes of the tree.

The inner nodes of the tree are computed in parallel by finding the common bit prefixes of

the Morton codes, producing a radix tree over the points. The resulting radix tree can then

be directly interpreted as a k-d tree, where each inner node’s Morton code prefix indicates

the split axis and position. The construction is fast and can be performed entirely in parallel

on CPUs and GPUs. However, the resulting tree stores a single particle per-leaf node, which

is not suited to the goal of multiresolution reads and low memory overhead.

The shallow tree is built by using a prefix of each particles’ Morton code and merging

shared prefixes to produce a smaller set of codes. The build process then proceeds as

described above. The leaves of the shallow tree correspond to rectangular regions containing

large numbers of particles with the same Morton code suffix. A default 12 bit prefix is

used, which was found to provide satisfactory results with respect to the number of leaves

produced and particles falling into each. For small inputs, the prefix is shortened to coarsen

the tree and build fewer treelets with more particles in each one. A treelet is constructed

with each leaf of the shallow tree, described in the following section. To support attribute

filtering in the shallow tree, the bitmap indices of the inner nodes are populated bottom-up

in parallel after the treelets have been built, using the bottom-up traversal described by

72

Karras. The bitmaps of each shallow leaf are set by the root node of its treelet.

3.3.2.2 Parallel Treelet Construction

The treelet builds for each leaf in the shallow tree are independent and run in parallel.

For each leaf, the set of particles with the leaf’s prefix are found using a binary search

over the sorted set of Morton codes, after which a median split k-d tree is built over them.

The median split k-d construction is a standard top-down serial builder that splits the set

particles at their median coordinate to form the left and right children. A leaf node is created

when the number current particles falls below a configurable size threshold.

A fixed number of LOD particles are stored at each treelet inner node to support

multiresolution reads. The LOD particles are selected when creating an inner node by

performing a stratified sampling of the current set of particles to select a representative

subset. The particles are repeatedly sorted along the splitting axes during construction,

allowing a stratified sampling to provide a reasonable spatial distribution of the chosen

particles. By taking subsets of particles for LOD, the layout avoids duplicating particles or

introducing new representative ones, thereby reducing memory overhead.

The attribute bitmaps are propagated bottom-up during construction. After creating

a leaf node, its bitmap indices are computed by taking the bitwise OR of the bitmaps of

its contained particles. Each inner node computes its bitmap indices by computing the

bitwise OR of its children’s bitmaps with those of its own LOD particles. To reduce memory

overhead, bitmaps are stored only for the inner and leaf nodes, not for individual particles.

3.3.2.3 Tree Compaction

After the build steps have completed, the tree is compacted into a single buffer that can

be efficiently written to disk. Data within this buffer are structured to support fast reads via

memory mapping (Fig. 3.9). During compaction, the bitmaps of each node are merged into

a dictionary of unique bitmaps and replaced with 16-bit IDs into this dictionary to further

reduce memory use. Using 16-bit IDs limits the dictionary size to 65k bitmaps; however,

this has been found to be more than sufficient in practice.

The shallow tree and bitmap dictionary are stored at the start of the file, as they will be

accessed frequently during traversal. The shallow tree is stored as a linear k-d tree. The leaf

nodes of the shallow tree are replaced with offsets to the corresponding treelets in the file.

73

Memory

Address

0

Top-Level Tree
Bitmap Dictionary

0 1

2 3

4 5

6 7

Inner Node
Bitmap IDs

(per-attribute, AoS)

[0, 1, 0], [0, 2, 0],
[1, 3, 0]

Leaf Nodes
(Treelet Addresses)

a×4096 b×4096

c×4096 d×4096

k-d Tree Inner Nodes

a×4096

Treelet
k-d Tree Nodes

Node Bitmap IDs
(per-attribute, AoS)

[0, 2, 0], [1, 2, 1], [2, 4, 3],
[3, 6, 2], [7, 2, 3], [7, 4, 3],

[7, 6, 3]

Particle Positions (AoS)

[x, y, z,...]

Attributes (SoA)

[pressure...]
[temperature...]
[type...]

0 m n o p

a×4096 q r s t

Fig. 3.9: The BAT layout is organized on disk for fast spatial and attribute query traversal
and LOD via memory mapping. The top-level tree is stored at the start of the file in
two parts. The first section contains the k-d tree inner nodes, followed by the leaf nodes.
The leaf nodes are addresses of the corresponding treelet in the file. The shared bitmap
dictionary is also stored at the start of the file, along with the IDs of the top-level tree’s inner
node bitmaps. Each treelet is aligned to a 4KB page boundary for fast access via memory
mapping. Each treelet consists of the k-d tree and the bitmap IDs for each node, followed
by the particle data.

Treelets are stored at 4KB page boundaries to improve read access performance. Each treelet

consists of a header specifying the number of nodes and points in the treelet, followed by

arrays containing the nodes and particles. Storing the BAT in this separate layout provides

a 2− 3× improvement in read performance over merging the shallow tree and treelets into

a single tree, and removes the slow serial merge step that would otherwise be required to

merge the shallow tree and treelets into a single tree.

3.3.3 Support for Visualization Reads

Postprocess visualization tasks are typically performed on laptops, workstations, or

small clusters, at far lower levels of parallelism than the simulation was run at, and with

access to far less memory and compute power. In the case of large-scale simulations, the

user’s system may not even have sufficient disk space to store the data, requiring some

form of remote streaming or rendering.

Visualization reads on the BAT layout take a desired quality level, bounding box for

spatial filtering, and set of attribute filters. The user also provides a callback that is called for

each point contained in the query. The BAT layout directly accelerates common visualization

and analysis tasks involving spatial and attribute subset queries (Section 3.3.3.1), and

74

supports progressive low-latency multiresolution reads for data streaming (Section 3.3.3.2).

Reads are performed via memory mapping to leverage the operating system’s caching

mechanisms for frequently accessed regions of the data and for fast access to page aligned

regions of the files (i.e., the treelets).

3.3.3.1 Spatial and Attribute Query Acceleration

Supporting spatial and attribute filtering directly in the data layout reduces the amount

of data that must be processed to answer a user query, thereby improving response time

and reducing memory use. As the BAT layout is fundamentally a spatial k-d tree, spatial

queries are accelerated by the spatial hierarchy stored in the files.

When performing attribute filtering, the user’s query bitmaps are tested against those

stored at each node during traversal. If the overlap of the two is empty, the subtree can

be ignored. The user’s query bitmap must be remapped when entering a treelet, as the

range of the treelet’s bitmaps is a subset of the global range for each attribute. A final false

positive check is required before returning queried points to the user’s callback. Although

the spatial filtering provided by the k-d tree is exact, the binned bitmaps only ensure that

false negatives are not discarded, requiring a final false positive check for attribute queries.

3.3.3.2 Low-Latency and Progressive Resolution Reads

Low-latency and progressive resolution reads work together to allow users to quickly

load coarse representations of their data to begin performing their analysis while additional

data are loaded in the background, and to analyze large data sets on low-power devices

(Fig. 3.10). Without this capability, it may be possible to work with the data only on a

large memory workstation or small cluster, impacting the scientists’ ability to perform their

analysis.

To support fast multiresolution reads, the BAT layout can be queried at different quality

levels to return a representative subset of the data using the LOD particles stored at the

treelet inner nodes. Progressive reads can be performed by providing the previously queried

quality level and the desired level, in which case only the new particles for the increment in

quality are processed.

The quality-level parameter ranges from zero to one, where zero corresponds to loading

nothing and one corresponds to loading the entire data set. Internally, this parameter is

75

Fig. 3.10: A prototype web viewer client that progressively streams data from a server. The
server uses the BAT layout to progressively load and send data back to clients and apply
spatial- and attribute-based filtering.

remapped using a log scale to provide a smoother quality progression as the number of

LOD particles stored grows exponentially with the tree level. The quality value is then

scaled to a maximum treelet depth to traverse to, based on the total tree depth. When

performing progressive reads, the previous quality is mapped to a previously processed

minimum treelet depth. The tree is then traversed to the maximum treelet depth, processing

only points above the minimum depth. To provide a smoother LOD progression, the

quality parameter is also used to compute a percentage of the points at the maximum level

to process, reducing issues with LOD pop-in. Spatial and attribute filtering can also be

performed when using progressive resolution reads.

3.4 Parallel I/O Scaling Study

This section demonstrates the scalability and portability of the AUG and aggregation tree

approaches for spatially aware two-phase I/O are through an extensive set of benchmarks

on parallel writes and reads. The benchmarks are run on both fixed uniform and time-

varying nonuniform particle distributions. The bandwidth achieved by the presented I/O

strategies is compared against standard file per process and single-shared file approaches,

and studied in depth through timing breakdowns of the stages comprising the I/O pipelines.

The parallel I/O benchmarks are run on four HPC systems with different I/O archi-

76

tectures: Mira, Theta, Stampede2, and Summit. Mira uses a 5D Torus network topology

and GPFS filesystem, which is capable of 240GB/s peak bandwidth [44]. Theta uses a

Cray Dragonfly topology network and a Lustre filesystem, which is capable of 172GB/s

peak bandwidth [113]. On Theta, the Lustre system to use 48 stripes (48 OSTs), with the

stripe size set to 8MB, as recommended by the ALCF guidelines for I/O performance on

Theta [53]. Stampede2 uses a Lustre file system and the benchmarks write to the scratch

system, which is capable of 330GB/s peak write bandwidth [263]. On Stampede2, the Lustre

output is configured to use a stripe count of 32 and stripe size of 8MB. Summit uses a GPFS

filesystem with a peak write speed of 2.5TB/s [206]. Both systems use a fat-tree topology

network, capable of 100Gbps on Stampede2 and 184Gbps on Summit. Each Mira compute

node has a 16-core IBM PowerPC A2 CPU; each Theta node has a Intel Xeon Phi Knight’s

Landing CPU; Stampede2 has multiple compute partitions, the benchmarks are run on the

dual socket Xeon Skylake (SKX) nodes; each Summit node has two POWER9 CPUs and six

Volta V100 GPUs.

3.4.1 Weak Scaling on Uniform Particle Distributions

To provide a baseline comparison of the presented I/O strategies against standard ones,

they are evaluated using a weak scaling study on a generated uniform particle distribution.

The generated uniform distribution provides a workload representative of particle-based

simulations performed using the Uintah computational framework [21]. Uintah is a general

purpose computational framework, and has been used for numerical modeling of fluid-

structure interactions, computational fluid dynamics, solid mechanics, and multiphysics

simulations. As part of its framework, Uintah includes support for a range of particle-based

models, for example the material point method [21] and Lagrangian particle transport [239].

The Uintah computational framework has been demonstrated at core counts approaching

768k [21]. Workloads with 32,768 (32k) and 65,536 (64k) particles per core are used in the

experiments to provide data volumes similar to large-scale simulations. Each particle stores

124 bytes of data representing its position and physical other attributes, corresponding to

4MB and 8MB of data per core in the tested workloads respectively. IOR [254] is used to

evaluate the performance of standard approaches by writing an equivalent amount of data

using IOR’s file per process, single-shared file (MPI I/O), and HDF5 shared file modes. To

77

measure the I/O time that would be observed by a real-world simulation, the benchmarks

do not perform an explicit fsync. To avoid the impact of OS caching when in the read

benchmarks, files are read on different ranks than those that wrote them.

3.4.1.1 Aggregation Using the Adjustable Uniform Grid

The AUG aggregation strategy is evaluated on the Mira and Theta HPC systems using

the 32k and 64k particle per core workloads. The benchmarks are run on both machines

scaling from 512 to 262,144 ranks, thus varying the amount of data generated in the

benchmark from 2GB to 1TB at 32k particles per core, and 4GB to 2TB at 64k particles

per core. The benchmarks are run at multiple APFs to evaluate the impact of the amount

of aggregation performed on I/O performance; testing APFs of (1, 1, 1), (1, 1, 2), (1, 2, 2),

(2, 2, 2), (2, 2, 4), (2, 4, 4) and (4, 4, 4). In preliminary scaling tests, Mira was found to

perform better with larger APFs compared to Theta, which performed better at smaller

ones. Based on this observation, the APF configurations (1, 1, 2) and (1, 2, 2) were not run

on Mira.

The results of the scaling studies on Mira are shown in Figs. 3.11a and 3.11b, along

with the IOR and Parallel HDF5 results. Both IOR’s file per process and the proposed

AUG approach with an APF of (1, 1, 1) (i.e., file per process), begin to encounter scaling

issues at high levels of parallelism (131,072 ranks with 32k particles and 65,536 with 64k

particles). At these scales, file per process I/O encounters issues with the parallel file-system

failing to handle the massive number of small output files efficiently. The single-shared file

approaches, evaluated using IOR’s collective mode and Parallel HDF5, are also observed

to not scale beyond medium core counts. Collective I/O to output a single-shared file

requires global synchronization and communication between the ranks, and it is this global

communication that does not scale well. On Mira, the proposed AUG approach using APFs

of (2, 2, 4) and (2, 4, 4) provides the best performance, and scales well up to the largest

configurations tested at 262,144 ranks. At this scale, AUG achieves a peak throughput

of 75GB/s on the 32k particle workload using an APF of (2, 2, 4) and 98GB/s on the 64k

particle workload using an APF of (2, 4, 4), The two-phase I/O approach employed in AUG

is able to avoid the bottlenecks that impact file per process and single-shared file at scale by

adjusting the amount of aggregation performed to achieve high-performance I/O.

78

On Theta (Figs. 3.11c and 3.11d), exhibits very different I/O performance characteristics

compared to Mira. Theta uses a Lustre filesystem, which is known to perform well with

file per process I/O, even at large scales. As would then be expected, IOR’s file per process

mode and AUG with an APF of (1, 1, 1) (i.e., file per process) perform well on Theta, and

scale much better than the same methods did on Mira. However, even on the Lustre

filesystem file per process I/O is outperformed by higher APFs at large core counts where

the time spent creating the massive number of files becomes a bottleneck. Although the

(1, 2, 2) configuration is outperformed by the (1, 1, 1) configuration, it overtakes it at higher

core counts and achieves the best performance at 262,144 cores. The (1, 2, 2) configuration

achieves a peak throughput of 216GB/s on the 32k particle workload and 243GB/s on the

0.1

1

10

100

B
a

n
d

w
id

th
 (

G
B

/
s)

Ranks

2x2x2
2x4x4
IOR Collective

1x1x1
2x2x4
IOR FPP
Parallel HDF5

512 1024 2048 4096 8192 16384 32768
65536

131072

262144

(a) Mira, 32k particles per-core

0.1

1

10

100

Ranks

B
a

n
d

w
id

th
 (

G
B

/
s)

2x2x2
2x4x4
IOR Collective

1x1x1
2x2x4
IOR FPP
Parallel HDF5

512 1024 2048 4096 8192 16384 32768
65536

131072

262144

(b) Mira, 64k particles per-core

1

10

100

1000

Ranks

B
a

n
d

w
id

th
 (

G
B

/
s)

512 1024 2048 4096 8192 16384 32768
65536

131072

262144

 1x2x2 2x2x2

 4x4x4 IOR FPP

1x1x1

2x2x4

IOR Collective

1x1x2

2x4x4

Parallel HDF5

(c) Theta, 32k particles per-core

1

10

100

1000

512 1024 2048 4096 8192 16384 32768
65536

131072

262144Ranks

B
a

n
d

w
id

th
 (

G
B

/
s)

 1x2x2 2x2x2

 4x4x4 IOR FPP

1x1x1

2x2x4

IOR Collective

1x1x2

2x4x4

Parallel HDF5

(d) Theta, 64k particles per-core

Fig. 3.11: Parallel write weak scaling for different configurations of two-phase I/O using
Adjustable Uniform Grid aggregation on Mira (first row) and Theta (second row). The best
Aggregation Partition Factor is machine and workload dependent, and is left exposed to
simulations as a tuneable parameter. IOR and Parellel HDF5 experiments are provided as a
reference for file per process and collective I/O performance.

79

64k particle workload1. Single-shared file I/O provides poor performance overall on Theta,

attributable to both the expensive global communication step and the Lustre filesystem’s

better support for file per process style I/O.

Timing breakdowns of the time spent on communication for aggregation and I/O in

the pipeline are shown in Fig. 3.12 to study how different APFs affect performance on Mira

and Theta. A key difference between Theta and Mira is the cost of data aggregation, with

data aggregation occupying a greater percentage of time on Theta an Mira at equivalent

APFs. The higher cost of aggregation, combined with the Lustre filesystem’s better support

1Note that this exceeds the 170GB/s peak bandwidth advertised for Theta. The filesystem can return back
to the caller before the data are fully flushed to disk, providing the appearance of higher performance.

0%

20%

40%

60%

80%

100%

1x1x1 2x2x2 2x2x4 2x4x4

I/O Aggregation

(a) 32K particles, Mira

0%

20%

40%

60%

80%

100%

1x1x1 2x2x2 2x2x4 2x4x4

I/O Aggregation

(b) 64K particles, Mira

0%

20%

40%

60%

80%

100%

1x1x1

I/O Aggregation

1x1x2
1x2x2

2x2x2

2x2x4

2x4x4

4x4x4

(c) 32K particles, Theta

0%

20%

40%

60%

80%

100%
I/O Aggregation

1x1x1
1x1x2
1x2x2

2x2x2

2x2x4

2x4x4

4x4x4

(d) 64K particles, Theta

Fig. 3.12: Time profiles for different aggregation configurations on Mira (a, b) and Theta
(c, d). More time is spent in aggregation on Theta compared to Mira for the same APF
configurations, which indicates that smaller APFs, and thus less aggregation, should be
preferred on Theta, while the opposite is true on Mira.

80

for writing many files, explains why lower APFs perform better on Theta than higher

ones, and vice versa on Mira. For example, when comparing the performance of a (2, 2, 4)

APF on Theta and Mira, less than 10% of the total time is spent on aggregation on Mira,

while on Theta it accounts for 30-40% of the total time. This observation, combined with

the performance results discussed previously, indicate that data aggregation tends to be

more expensive on Theta, and smaller APFs should be preferred, while the opposite is true

on Mira. By exposing the APF as a configurable parameter, simulations using the AUG

two-phase I/O approach are able to adjust the I/O strategy to best fit the target HPC system

to portably achieve high bandwidth writes.

3.4.1.2 Aggregation Using the Aggregation Tree

The aggregation tree approach is evaluated on the Stampede2 and Summit HPC systems

using the 32k particle workload. In each benchmark, the data are written and read 15 times

and the geometric mean of bandwidth achieved recorded, as done in the IO500 [132]. The

benchmarks also study the effect of the target file size on write and read performance by

varying the target file size from 8MB (file per process) to 256MB (≈63 ranks per file).

On both Stampede2 and Summit (Fig. 3.13), the proposed aggregation tree two-phase

I/O approach outperforms file per process and single-shared file I/O at higher core counts.

The results observed are similar to those seen for AUG on Theta and Mira. Stampede2

(Fig. 3.13a) uses a Lustre filesystem, and thus sees better performance in IOR’s file per

process mode and in the aggregation tree with an 8MB target size than is observed on

Summit, which uses a GPFS file system. However, as observed in the previous section, the

file per process approaches do not scale to higher core counts compared to configurations

that perform more aggregation, due to the overhead of creating the large number of files.

Single-shared file I/O achieves relatively better performance on Stampede2 than was

observed on Theta, although it does not scale to large core counts. On Stampede2, the

aggregation tree achieves a peak bandwidth of 145GB/s at 24,576 cores in the 128MB

target file size configuration. Summit (Fig. 3.13b) uses a GPFS file system, and sees poor

scalability for both file per process and single-shared file I/O, trends that are in line with

observations on Mira in the previous section, which also uses a GPFS filesystem. On

Summit, the aggregation tree achieve a peak bandwidth of 165GB/s at 43,008 cores in the

81

96 192 384 768 1536 3072 6144 12288 24576

Ranks

1

10

100

B
an

d
w
id
th

(G
B
/s
)

IOR FPP

IOR HDF5

IOR Shared

Target Size 8MB

Target Size 16MB

Target Size 32MB

Target Size 64MB

Target Size 128MB

Target Size 256MB

(a) Stampede2

84 168 336 672 1344 2688 5376 10752 21504 43008

Ranks

1

10

100

B
a

n
d

w
id

th
(G

B
/

s)

(b) Summit

Fig. 3.13: Write bandwidth weak scaling on the fixed uniform test data compared to IOR
benchmarks. At scale, the proposed aggregation tree approach outperforms standard file
per process and single-shared file approaches.

16MB target file size configuration, with the 64MB configuration only slightly slower at

163GB/s. Overall, the performance difference between smaller and larger target file sizes is

smaller on Summit than on Stampede2, with both systems performing better with larger

target sizes at higher core counts.

Timing breakdowns of two target file sizes, 8MB and 64MB, across the scaling runs

on Stampede2 and Summit are shown in Fig. 3.14, to study where time is spent in the

aggregation tree I/O pipeline. Within the aggregation tree pipeline, the bulk of time is spent

writing the aggregator files to disk (Agg. Write), constructing the BATs on each aggregator

(Agg. BAT Build), and transferring data to aggregators (Data Agg.). The total time spent

82

96 192 384 768 1536 3072 6144 12288 24576
Ranks

0

20

40

60

80

100

T
im
e
(%
)

Data Agg.
Agg. BAT Build
Agg. Write
Agg. Assignment
Metadata Gather
Metadata Write
Other

(a) Stampede2 8MB target size

84 168 336 672 1344 2688 5376

Ranks

0

20

40

60

80

100

T
im

e
(%

)

10752

21504

43008

(b) Summit 8MB target size

96 192 384 768 1536 3072 6144 12288 24576

Ranks

0

20

40

60

80

100

T
im
e
(%
)

(c) Stampede2 64MB target size

84 168 336 672 1344 2688 5376

Ranks

0

20

40

60

80

100

T
im

e
(%

)

10752

21504

43008

(d) Summit 64MB target size

Fig. 3.14: Timing breakdowns on Stampede2 and Summit. In the scaling regime of each
target size, the relative time spent in each component remains similar.

constructing the Aggregation Tree and aggregator assignment (Agg. Assignment) varies

with core count and tree depth. The depth of the tree is related to the target file size; smaller

target sizes will have to partition the ranks further to reach the smaller desired leaves,

whereas larger ones can terminate the build earlier. Similarly, the cost of communicating

the aggregator assignment information to each aggregator during Agg. Assignment also

grows with the number of assigned aggregators, as each must be sent a list of the ranks in

its aggregation group. When comparing the major costs of the 8MB and 64MB target size

runs, the 64MB configuration is found to spend a relatively consistent amount of time in

each component as the benchmark is scaled up, whereas the 8MB configuration spends a

greater percentage of time in writes at higher core counts where the corresponding scaling

trend flattens off. On Stampede2, a larger percentage of time is spent constructing the BAT

layout than on Summit. The build is compute and memory bandwidth heavy, and likely

benefits from the larger L3 cache of the POWER9 CPUs on Summit.

On parallel reads, the aggregation tree approach outperforms file per process and

83

96 192 384 768 1536 3072 6144 12288 24576

Ranks

1

10

100

B
an

d
w
id
th

(G
B
/s
)

IOR FPP

IOR HDF5

IOR Shared

Target Size 8MB

Target Size 16MB

Target Size 32MB

Target Size 64MB

Target Size 128MB

Target Size 256MB

(a) Stampede2

84 168 336 672 1344 2688 5376 10752 21504 43008

Ranks

1

10

100

B
a

n
d

w
id

th
(G

B
/

s)

(b) Summit

Fig. 3.15: Read bandwidth weak scaling on the fixed uniform test data, compared to IOR
benchmarks. The aggregation tree’s two-phase parallel read strategy outperforms standard
file per process and single-shared file reads at scale.

single-shared file strategies beyond moderate core counts on both systems (Fig. 3.15).

Performance trends similar to those seen on writes are observed, where the overhead of

many small files in file per process and small target size configurations impacts performance,

whereas the global communication of single-shared file approaches limits scalability. The

aggregation tree’s two-phase I/O approach allows selecting the target size to avoid both

issues and achieve high bandwidth reads. On Summit, the scaling trend on small to medium

size aggregation settings flattens off or begins decreasing by 43k cores; however, the 256MB

aggregation size does not flatten off as rapidly. Selecting an even larger aggregation size

could help continue scaling read bandwidth past 43k cores.

84

3.4.2 Adjustable Uniform Grid vs. Aggregation Tree

A set of benchmarks on time-varying nonuniform particle distributions from two simu-

lations (Fig. 3.16) is used to compare the performance impact of the improved adaptivity

provided by the aggregation tree over the AUG. For ease of comparison, the AUG approach

is adjusted to take a target file size as input instead of an APF. The AUG builder will then

assume a uniform particle distribution over the ranks that have particles, based on the

average number of particles per rank. The aggregation tree is configured to allow the

creation of overfull leaves up to 1.5× the target file size, if the best split to partition the

ranks has a cost of four or higher. The benchmarks are performed on the Skylake Xeon

nodes on Stampede2. The two data sets used are representative of different time-varying

nonuniform particle distributions used in simulations: the coal boiler and the dam break.

The coal boiler (Fig. 3.16a) is a real-world simulation performed using Uintah [191],

simulating the injection of coal particles into a boiler. Uintah is a computational framework

that has been used to simulate large-scale nonuniform particle distributions scaling up to

512k cores of Mira (65% of the machine) [21]. The domain is partitioned using a 3D grid and

resized to fit the data bounds as they change over time. At time step 501, the simulation

contains 4.6M particles and reaches 41.5M at time step 4501. The I/O benchmark is run

using 1536 ranks. Each particle saves three floating point coordinates and seven double

precision attributes.

The dam break (Fig. 3.16b) is a 3D free surface water column collapse simulation,

containing a fixed number of particles that move through the domain. The dam break was

simulated with ExaMPM, a mini-app developed using the Exascale Computing Project (ECP)

Cabana particle toolkit [260], which accurately represents the I/O workload of production

applications. Migrating the mini-app’s original output required minimal changes, replacing

Silo [163] write calls with corresponding API calls from to the library implementing the

presented I/O strategies. The domain is partitioned among the ranks using a 2D grid along

x and y (the floor) to achieve better compute load balance. Two versions of the dam break

are used to compare scalability, one with 2M particles on 1536 ranks and one with 8M

particles on 6144 ranks. Each particle saves three floating point coordinates and four double

precision attributes.

On the coal boiler, the aggregation tree strategy improves write performance by up to

85

(a) The coal boiler, time steps: 1501, 2501, 3501, 4501

(b) The dam break, time steps: 0, 1001, 4001.

Fig. 3.16: The time-varying nonuniform simulation data used in the benchmarks.

2.5× compared to AUG aggregation (Fig. 3.17a). Parallel reads on the adaptively aggregated

data can be up to 3× faster (Fig. 3.17b). As the number of particles in the simulation

increases, performance decreases at lower target sizes, whereas larger target sizes surpass

them. Similar trends are observed for reads. When comparing timing breakdowns of both

approaches at 8MB (Fig. 3.18), the aggregation tree strategy is found to spend less time in

the major steps of the I/O pipeline.

These performance improvements are the result of the aggregation tree’s adaptive

aggregation ensuring a more balanced I/O workload. For example, on the 8MB target size

runs at time step 4501, AUG aggregation outputs 296 files, with an average size of 10.2MB

and standard deviation of 13.9MB. The aggregation tree approach writes 327 files, with an

average size of 9.2MB and standard deviation of 8.4MB. The largest file written by the AUG

aggregation was 72.9MB, whereas the largest file written by the aggregation tree approach

was 36.6MB. If a rank’s local data exceed the target file size, both methods can output files

larger than the target size, as the local data on a rank will not be subdivided.

On the 2M dam break, the file per process mode of both strategies achieves the best

(and similar) write performance (Fig. 3.19a); however, the adaptively written data provide

slightly faster reads (Fig. 3.19c). On the 8M dam break, the 3MB target size using adaptive

aggregation achieves the best write performance overall (Fig. 3.19b), at a 1.5− 2× speed-up

over AUG aggregation at the same target size, with up to 3× speed-ups observed for reads.

86

The performance gap between adaptive and AUG aggregation grows with the particle and

core count, with the exception of file per process writes. The smaller performance difference

is also partially attributable to the smaller size (in bytes) of each particle in the dam break

compared to the coal boiler.

The dam break contains a fixed number of particles that move through the domain, and

an ideal I/O strategy would be expected to achieve constant write times over the time series.

A timing breakdown of the 3MB run on the 8M dam break (Fig. 3.20), demonstrates that the

501 1001 1501 2001 2501 3001 3501 4001 4501
Timestep

4

6

8

10

12

14

16

B
an
d
w
id
th
(G
B
/
s)

Target Size 2MB
Target Size 4MB
Target Size 8MB
Target Size 16MB

(a) Write bandwidth.

501 1001 1501 2001 2501 3001 3501 4001 4501
Timestep

2

4

6

8

10

12

B
an
d
w
id
th
(G
B
/
s)

Target Size 2MB
Target Size 4MB

Target Size 8MB
Target Size 16MB

(b) Read bandwidth.

Fig. 3.17: Aggregation tree vs. AUG I/O on the coal boiler time series on 1536 ranks. Dashed
lines indicate AUG aggregation. The aggregation tree is able to improve write and read
performance for imbalanced I/O workloads.

87

501 1001 1501 2001 2501 3001 3501 4001 4501
Timestep

0

50

100

150

200

250

300

350

T
im
e
(m
s)

Data Agg.
Agg. BAT Build
Agg. Write
Agg. Assignment
Metadata Gather
Metadata Write

(a) Adaptive aggregation

501 1001 1501 2001 2501 3001 3501 4001 4501
Timestep

0

50

100

150

200

250

300

350

T
im
e
(m
s)

(b) AUG aggregation

Fig. 3.18: Breakdowns of adaptive vs. AUG I/O on the coal boiler, 8MB target size. The
improved load balance achieved by the aggregation tree approach reduces time spent in
the major components of the pipeline, improving write performance.

AUG is strongly affected by the simulation’s particle distribution, whereas the aggregation

tree achieves nearly constant write times.

Based on these experiments, the aggregation tree should be configured to use smaller

target sizes at lower core or particle counts, corresponding to roughly 1 : 1 to 4 : 1

aggregation factors. At larger scales, the target size should be increased to roughly 16 : 1

to 64 : 1 or higher, to avoid overloading the file system with large numbers of files. In

simulations where particles are added over time, such as the coal boiler, the target size

should be increased over time to maintain high-performance I/O. These recommendations

could be used to automatically pick a default target size.

3.5 Evaluation on Post Hoc Visualization Reads

To examine the suitability of the BAT layout for visualization and analysis, an evaluation

is conducted of its support for low-latency progressive multiresolution reads, accelerating

attribute-based queries, reporting the memory overhead required to store the structure. The

following evaluation is performed using a single threaded process on a desktop with an

i9–9920X CPU, 128GB of RAM, and 1TB Samsung 970 NVMe drive. The benchmarks are

run reading data output by the aggregation tree approach, which constructs the BAT layout

during the I/O pipeline.

88

0 1001 1501 2501 3001 3501 4001
Timestep

1

2

3

4

5

6

B
an
d
w
id
th
(G
B
/
s)

Target Size 0MB
Target Size 1MB

Target Size 3MB
Target Size 6MB

(a) Write bandwidth, 1536 ranks

0 1000 1501 2501 3001 3501 4001
Timestep

5

10

15

B
an
d
w
id
th
(G
B
/
s)

Target Size 0MB
Target Size 1MB

Target Size 3MB
Target Size 6MB

(b) Write bandwidth, 6144 ranks

0 1001 1501 2501 3001 3501 4001
Timestep

2

4

6

8

10

B
an
d
w
id
th
(G
B
/
s)

(c) Read bandwidth, 1536 ranks

0 1000 1501 2501 3001 3501 4001
Timestep

10

20

30

B
an
d
w
id
th
(G
B
/
s)

(d) Read bandwidth, 6144 ranks

Fig. 3.19: Aggregation tree vs. AUG aggregation on the dam break time series. Dashed lines
indicate AUG aggregation. The performance improvement provided by the aggregation
tree increases at larger scales for imbalanced simulations.

0 1000 1501 2501 3001 3501 4001
Timestep

0

10

20

30

40

50

60

70

T
im
e
(m
s)

Data Agg.
Agg. BAT Build
Agg. Write
Agg. Assignment
Metadata Gather
Metadata Write

(a) Adaptive aggregation

0 1000 1501 2501 3001 3501 4001
Timestep

0

10

20

30

40

50

60

70

T
im
e
(m
s)

(b) AUG aggregation

Fig. 3.20: Breakdowns of adaptive vs. AUG I/O on the 8M dam break, 3MB target size. The
aggregation tree approach maintains nearly constant I/O times, whereas the AUG approach
is influenced by the changing distribution of the particles.

89

3.5.1 Low-Latency Progressive Multiresolution Reads

The BAT layout’s suitability for low-latency progressive multiresolution reads is eval-

uated through a benchmark representative of a typical progressive read use case. The

benchmark starts at a coarse quality level of 0.1 (approximately 10% of the data), and

successively requests higher quality levels in increments of 0.1 until the entire data set is

loaded. The time spent to traverse the tree and process each requested point is recorded;

however, the time spent in the user callback is not, as its cost will inherently vary by the

desired application (e.g., copying data, performing computation, etc.). The BATs were built

in the previous section, storing eight LOD particles per treelet inner node and up to 128

particles per treelet leaf. The average read performance achieved on the Coal Boiler is

shown in Table 3.1, and on the Dam Break in Table 3.2.

Similar performance is achieved in both data sets when reading data aggregated at

different target sizes. On the Coal Boiler, multiresolution reads perform slightly better

on data written with a 4MB target size, and on the Dam Break on data written with a

3MB target size. The largest factor determining read performance is the number of points

queried. The quality level represents a percentage of the total data to query, and thus

level 0.1 corresponds to more points on the Coal Boiler than on the Dam Break. When

comparing the data sets in terms of points per millisecond read throughput, both the Coal

Boiler and 8M Dam Break achieve similar throughputs. The 2M Dam Break achieves higher

throughput, likely due to its small size, which allows more data to remain cached by the

OS.

Although not encountered in the benchmarks presented, it is possible for small target

size or file per process writes to produce more files than can be open at once. In this case, a

caching mechanism can be used to close the oldest files when new ones must be opened;

however, the added overhead of opening and closing files would have a large impact on

read performance.

The BAT layout does not impose a specific visual representation on visualization tasks,

as the best choice is often domain specific. To provide an example of the quality progression

provided by the layout, a simple LOD approach is used, where coarser representations are

displayed with increased particle radii to fill holes and preserve the overall shape of the

object [164], shown on the Coal Boiler in Fig. 3.21.

90

Table 3.1: Progressive single-thread read times and throughput on time step 4501 of the
Coal Boiler, written using 1536 ranks.

Target Size Avg. Read (ms) Avg. Throughput (points/ms)

2MB 72.5ms 54968 pts/ms
4MB 69.1ms 55663 pts/ms
8MB 71.8ms 54148 pts/ms

16MB 70.2ms 52501 pts/ms

Table 3.2: Progressive single-thread read times and throughput on the 2M and 8M particle
Dam Break time series.

Target Size Avg. Read (ms) Avg. Throughput (points/ms)

1536 Ranks, 2M total points

0MB 2.7ms 71441 pts/ms
1MB 2.7ms 70012 pts/ms
3MB 2.6ms 72997 pts/ms

6144 Ranks, 8M total points

0MB 12.7ms 57659 pts/ms
1MB 12.8ms 57703 pts/ms
3MB 12.4ms 58926 pts/ms

Fig. 3.21: The visual quality progression on the Coal Boiler, time step 4501. Quality increases
from left to right: 0.2, 0.4, 0.8.

The error introduced when computing statistical analyses on coarser representations

is also of interest, as this indicates how useful the coarser representations can be expected

to be for visualization tasks beyond rendering. The error of various statistical measures

computed on the data at different quality levels is shown in Fig. 3.22. For most attributes,

the naive strategy employed for selecting the LOD particles provides improvement in error

as the quality is increased, and a tolerable maximum error on a coarse representation (0.1

quality). However, the LOD selection is based on sampling the spatial distribution of the

91

particles, leading to less consistent error improvement for those attributes not well sampled

by this approach. For example, the error actually increases for some attributes on the Coal

Boiler (Fig. 3.22a) and Dam Break (Fig. 3.22c) before decreasing again, indicating that these

were poorly represented by coarser levels of the tree.

3.5.2 Query Acceleration and Memory Overhead

The core of the BAT layout is a k-d tree, which provides built-in support for fast spatial

subregion, nearest neighbor, and radius queries. The 32-bit bitmap indices tracked for

each node are used to accelerate attribute subset queries. Although the accuracy of these

bitmaps is intentionally restricted compared to conventional bitmap indexing approaches,

the filtering selectivity is on par with explicitly storing exact value ranges at each node,

while requiring less memory.

Within each BAT, the bitmaps are stored relative to the local value range on the aggrega-

tor to improve the bin granularity. When using the global range, each bin would correspond

to ≈3.1% of the range. However, when using the aggregator range, the bin sizes correspond

to 1.2% of the range on average across attributes in the Coal Boiler and Dam Break data

sets. A set of generated attribute subset queries is performed that query up to four disjoing

ranges on each attribute to evaluate the cost of querying the data compared to storing just a

value range at each node. Overall, there is a negligible performance difference compared to

storing the value ranges at each node, with the 32-bit bitmaps processing and discarding an

extra 1.4% of false positives.

The memory overhead of storing the bitmap dictionaries is extremely low. Compared

to storing just the raw set of particle positions and attributes, the entire BAT structure (the

tree nodes, bitmap dictionaries, and indices) accounts for an additional 0.9% of memory on

average. The same layout configured to store ranges at each inner node would require an

extra 2.1% of additional memory. The 0.9% overhead is also significantly lower than the

space required for standard bitmap indexing approaches and multiresolution layouts that

rely on adding or duplicating particles.

3.6 Summary

General purpose I/O libraries typically do not take into account the requirements

of post hoc visualization tasks, instead focusing solely on raw I/O throughput. This

92

0.25 0.50 0.75 1.00
Quality

0.000

0.005

0.010

0.015
E
rr
o
r

v mean
w mean
v median
w median

(a) Coal Boiler

0.25 0.50 0.75 1.00
Quality

0

1

2

3

4

E
rr
o
r

u mean
u median

(b) Coal Boiler

0.25 0.50 0.75 1.00
Quality

0.0

0.1

0.2

0.3

E
rr
o
r

u mean
v mean
w mean
u median
v median
w median

(c) Dam Break

Fig. 3.22: The error in basic attribute statistics as the quality level is increased, shown for
the final time step of each data set.

chapter has presented work conducted by myself and collaborators on devleoping scalable

spatially aware aggregation strategies for two-phase I/O that output the particle data in

a layout readily suitable for post hoc visualization. Although the proposed visualization

tailored BAT layout is constructed during the I/O pipeline, it does not incur a significant

performance penalty. Building the visualization focused data layout during I/O allows

eliminating the need for an expensive post hoc data conversion, or even use of the layout

in situ as discussed later. Through the use of a tuneable two-phase I/O pipeline and a

data layout optimized for fast parallel construction, the presented I/O approaches achieve

better I/O performance than standard file per process and single shared file approaches,

and demonstrate portability across a breadth of HPC systems. The two I/O strategies

presented, the adjustable uniform grid and the aggregation tree, provide different trade-offs

with respect to adaptivity and computational cost. The AUG is cheap to compute, but is

not able to adapt to a wide variety of nonuniform particle distributions. The aggregation

tree requires additional computation to construct a more balanced I/O workload; however,

the improved load balance vastly improves the overall performance of the I/O pipeline

for unbalanced particle distributions. The presented BAT data layout is suitable for fast

parallel construction during I/O, and makes careful trade-offs between memory overhead

and its support for LOD and attribute-based query filtering.

CHAPTER 4

POST HOC VISUALIZATION

Post hoc visualization forms a key component of the simulation visualization pipeline.

It is during this step that scientists gain insight into the simulated phenomena by asking

and answering questions about the data through interactive visualization. Scientists can

use visualization systems to produce images, charts, segmentations, and other statistical or

visual representations to explore their hypotheses about the simulation. When processing

the full-resolution data, these tasks can be performed on a visualization cluster. When

working with subsets of the data or multiresolution representations, they can be done

locally on a workstation, in virtual reality, or in the web browser. Throughout the history

of visualization, a continuing challenge has been developing methods that can scale to

the ever-growing data set sizes output by simulations, or that can make such large data

accessible on typical workstations or laptops. With each increase in HPC system compute

and memory capabilities, scientists can simulate increasingly accurate simulations. These

simulations run at higher levels of parallelism and output more data, challenging widely

used visualization methods.

This chapter presents work in three key areas that face challenges today when perform-

ing post hoc visualization of massive data sets: scalable distributed rendering (Section 4.1),

virtual reality (Section 4.2), and the web browser (Section 4.3). These works are discussed in

order of decreasing computational capability of the target platform, and thus increasing

need for adaptive and multiresolution data management or processing.

Section 4.1 discusses the distributed framebuffer (DFB), a flexible, asynchronous image-

processing framework for scalable distributed rendering [281]. The need for high-performance

distributed parallel rendering is growing, spurred by trends in increasing data set sizes and

the desire for higher fidelity or interactivity. Meeting these demands poses new challenges

to existing rendering methods, requiring scalability across a spectrum of memory and

94

compute capabilities on HPC systems. Whereas the growth in data set sizes demands a

large amount of aggregate memory, the desire for more complex shading and interactivity

demands additional compute power. A large number of applications’ needs fall somewhere

in between these extremes of memory or compute scaling, requiring a combination of

additional memory and compute. Such applications are not well addressed by existing

techniques that focus on scalability in terms of aggregate memory or compute capacity

alone. The DFB achieves performance superior to the state of the art for standard use cases,

while also providing the flexibility to support a wide range of parallel rendering algorithms

and data distributions.

Section 4.2 presents a design study on how consumer VR systems, coupled with

state-of-the-art data management and visualization techniques, can improve the workflow

of connectomics researchers through the development of a VR tool for neuron tracing

(VRNT) [189, 277]. The VRNT is developed through a direct collaboration with neu-

roanatomists in the Angelucci lab at the University of Utah, to enable tracing neurons

in microscope scans of the visual cortex of nonhuman primates in VR. State-of-the-art

microscopy techniques can easily produce terabytes worth of volumetric data, which few

existing tools for connectomics are capable of handling. Such data sizes also far exceed

that which could be rendered naively at a satisfactory frame rate in VR, requiring the

development of a real-time page-based data processing system. The VRNT design process

explores the use of different rendering, interaction, and navigation methods, as well as force

feedback to improve the quality and speed of neuron tracing. A pilot study is conducted

using the VRNT to demonstrate that the immersive 3D interface provided through VR

substantially improves the overall user experience by allowing neuroanatomists to directly

interact with their data.

Finally, Section 4.3 discusses work on improving access to visualization systems capable

of handling large-scale scientific data sets by developing new techniques for the web

browser [279]. Information visualization applications have become ubiquitous, in no small

part thanks to the ease of wide distribution and deployment enabled by the web browser.

Scientific visualization applications that rely on native code libraries and parallel processing,

have been less suited to such widespread distribution, as web browsers do not provide

the required libraries or compute capabilities. This section revisits this gap in visualization

95

technologies, and explores how new web technologies, WebAssembly and WebGPU, can be

used to deploy powerful visualization solutions for large scientific data in the browser. To

enable visualization of large volumetric data sets entirely in the browser, a new GPU-driven

isosurface extraction method for block-compressed data sets is presented, block-compressed

marching cubes (BCMC). BCMC is designed for interactive isosurface computation on large

volumes in resource-constrained environments, such as the browser, and is demonstrated

on interactive isosurface computation on volumes with up to 1B voxels and up to 1TB in

size.

4.1 A Distributed FrameBuffer for Scalable
Ray Tracing

Data-parallel and image-parallel rendering can be seen as the two endpoints of a

spectrum of possible rendering configurations that blend between distributing subregions

of the data or the image as units of work for processing. Applications that fall somewhere

in between these two extremes, or those seeking to go beyond these common use cases, can

quickly run into issues when using existing methods. For example, whereas a master-worker

setup is well suited to image-parallel ray tracing, if the renderer wants to perform additional

postprocessing operations (e.g., tone-mapping, progressive refinement), or handle multiple

display destinations (e.g., display walls), the master rank quickly becomes a bottleneck.

Similarly, whereas existing sort-last compositing algorithms are well suited to statically

partitioned data-parallel rendering, extending them to support partially replicated or more

dynamic data distributions for better load balancing is challenging. Finally, standard

sort-last compositing methods operate bulk-synchronously on the entire frame, and are less

suited to tile-based ray tracers in which small tiles are rendered independently in parallel.

This section describes the algorithms and software architecture, the distributed frame-

buffer, developed to support distributed parallel rendering, with the goal of addressing the

above issues to provide an efficient and highly adaptable framework suitable for a range

of rendering applications [281] (Fig. 4.1). The distributed framebuffer (DFB) is built on a

tile-based work distribution of the image processing tasks required to produce the final

image from a distributed renderer. These tasks are constructed per tile at runtime by the

renderer and are not necessarily tied to the host application’s work or data distribution,

providing the flexibility to implement a wide range of rendering algorithms and distribute

96

Fig. 4.1: Large-scale interactive visualization using the distributed framebuffer. Top left:
Image-parallel rendering of two transparent isosurfaces from the Richtmyer-Meshkov [54]
(516M triangles), 8FPS with a 20482 framebuffer using 16 Stampede2 Intel Xeon Platinum
8160 SKX nodes. Top right: Data-parallel rendering of the Cosmic Web [131] (29B
transparent spheres), 2FPS at 20482 using 128 Theta Intel Xeon Phi Knight’s Landing
(KNL) nodes. Bottom: Data-parallel rendering of the 951GB DNS volume [167] combined
with a transparent isosurface (4.35B triangles), 5FPS at 4096× 1024 using 64 Stampede2
Intel Xeon Phi KNL nodes.

compute-intensive image processing tasks. The DFB performs all communication and

computation in parallel with the renderer using multiple threads to reduce compositing

overhead. Although the DFB is flexible enough to support renderers across the spectrum of

memory and compute scaling, it does not make a performance trade-off to do so.

4.1.1 The Distributed FrameBuffer

At its core, the DFB is not a specific compositing algorithm per se, but a general

framework for distributed rendering applications. A renderer using the DFB specifies

a set of tasks to be executed on the rendered image and per tile dependency trees for the

tasks. The tasks are parallelized over the image by subdividing it into tiles, where each tile

is owned by a unique rank—the tile owner—responsible for executing tasks for that tile.

If task dependencies are produced on ranks other than the tile owner, the DFB will route

them over the network to the owner. The tile dependency trees are specified per tile and

per frame, allowing for view- and frame-dependent behavior.

The tile processing pipeline involves three stages (Fig. 4.2). First, the dependency tree

is constructed by the tile operation as task dependencies are received from other ranks.

Once the entire tree has been received, the finished tile is computed by the tile operation

97

TileOperation

Finished Tile

PixelOp

Final Tile

Send to
display

Tile Task
Dependencies

Rank 1

Rank 0

Gen: 1
Children: 0

Gen: 1
Children: 0

Gen: 0
Children: 2

Local Function
Call

Optional
Operation

Sent over
MPI

Legend:

Fig. 4.2: An example of the DFB’s tile processing pipeline in a data-parallel renderer.
Dependencies are specified on the fly per tile and can be extended by child tiles. To compute
the highlighted tile owned by rank 0, the owner sends a background color tile for generation
0, which specifies that two additional tiles will arrive in generation 1, potentially from
different ranks. After receiving the full dependency tree, the tile operation produces the
finished tile, which is tone-mapped by a pixel operation and sent to the display rank.

and passed on to any pixel operations. The final output tile is then converted to the

display image format and sent to the display rank, if needed. The processing pipeline

and messaging system run asynchronously on multiple threads, allowing users to overlap

additional computation with that performed by the DFB. Although the DFB is presented in

the context of distributed rendering, the task input tiles are not required to be produced by

a renderer.

4.1.1.1 Tile Processing Pipeline

The DFB begins and ends processing synchronously, allowing applications processing

multiple frames, i.e., a renderer, to ensure that tiles for different frames are processed in the

right order. Before beginning a frame, the renderer specifies the tile operation to process the

tiles it will produce. Each rank then renders some set of tiles based on the work distribution

chosen by the renderer. As tiles are finished, they are handed to the DFB for processing

by calling setTile. During the frame, the DFB will compute tile operations for the tiles

owned by each rank in the background and send other tiles over the network to their owner.

The frame is completed on each rank when the tiles it owns are finalized, and rendering is

finished when all ranks have completed the frame. As each tile is processed independently

in parallel, it is possible for some tiles to be finalized while others have yet to receive their

first inputs.

To track the distributed tile ownership, the DFB instance on each rank stores a tile

98

descriptor (Listing 1) for each tile in the image. When setTile is called, the DFB looks

up the descriptor for the tile and sends it to the owner using an asynchronous messaging

layer (Section 4.1.1.2). If the owner is the calling rank itself, the tile is instead scheduled for

processing locally.

For each tile owned by the rank, the DFB stores a concrete tile operation instance in the

array of descriptors. The base structure for tile operations (Listing 1) stores a pointer to the

local DFB instance and a Tile buffer to write the finished tile data to, along with optional

accumulation and variance buffer tiles. The finalPixels buffer is used as scratch space to

write the final tile to, before sending it to the display rank. Depending on the display image

format specified (i.e., RGBA8, RGBAF32, or NONE), only a portion of the buffer may have valid

data. The NONE format is unique, in that it indicates that the display rank should not receive

or store the final pixels produced by the tile processing pipeline. This format is useful for

driving large display walls, as demonstrated in Section 4.1.2.4.

To implement the corresponding tile operation for a rendering algorithm (e.g., sort-last

struct Tile {

int generation;

int children;

region2i screenRegion;

int accumulationID; // Sample pass for progressive refinement

float color[4*TILE_SIZE*TILE_SIZE];

float depth[TILE_SIZE*TILE_SIZE];

float normal[3*TILE_SIZE*TILE_SIZE]; // Optional

float albedo[3*TILE_SIZE*TILE_SIZE]; // Optional

};

struct TileDescriptor {

virtual bool mine() { return false; }

vec2i coords;

size_t tileID, ownerRank;

};

struct TileOperation : TileDescriptor {

bool mine() { return true; }

virtual void newFrame() = 0;

virtual void process(const Tile &tile) = 0;

DistributedFrameBuffer *dfb;

vec4f finalPixels[TILE_SIZE*TILE_SIZE];

Tile finished, accumulation, variance;

};

Listing 1: The base structures for tiles and tile operations.

99

compositing) users extend the TileOperation, and specify their struct to be used by the

DFB. Each time a tile is received by the DFB instance on the tile owner, the process function

is called on the tile operation to execute the task. The newFrame function is called when a

new frame begins to reset any per frame state.

Then all the dependencies of a tile have been received, the tile operation combines the

inputs to produce a finished tile, which is then passed to the DFB. The local DFB instance

runs any additional pixel operations on the finished tile and converts the final pixels to

the display color format, outputting them to the finalPixels buffer. This buffer is then

compressed and sent to the display rank. In addition to the RGBA8 and RGBAF32 display

formats, the DFB also offers a NONE format, which is unique in that it indicates that the

display rank should not receive or store the final pixels at all. A useful application of the

NONE format to enable rendering to large display walls is discussed in Section 4.1.2.4.

4.1.1.1.1 Per tile task dependency trees. The Tile structure passed to setTile and

routed over the network is shown in Listing 1. To construct the dependency tree, each

rendered tile specifies itself as a member of some generation (a level in the tree), and as

having some number of children in the following generation. The total number of tiles

to expect in the next generation is the sum of all children specified in the previous one.

Different ranks can contribute tiles with varying numbers of children for each generation,

and can send child tiles for parents rendered by other ranks. There is no requirement

that tiles are sent in order by generation, nor is a tile operation guaranteed to receive tiles

in a fixed order. Tile operations with dependencies beyond a trivial single tile can be

implemented by buffering received tiles in process to collect the complete dependency

tree.

The interpretation and processing order of the dependency tree is left entirely to the

tile operation. For example, the dependency tree could be used to represent a compositing

tree, input to some filtering, or simply a set of pixels to average together. The creation of

the dependency trees by the renderer and their processing by the tile operation are tightly

coupled, and thus the two are seen together as a single distributed rendering algorithm.

The flexibility of the tile operation and dependency trees allows the DFB to be used in a

wide range of rendering applications (Section 4.1.2).

100

4.1.1.1.2 Pixel operations. Additional postprocessing, such as tone-mapping, can be

performed by implementing a pixel operation (PixelOp). The pixel operation takes the

single finished tile from the tile operation as input, and thus is not tied to the tile operation

or renderer. The DFB runs the pixel operation on the tile owner after the tile operation is

completed to distribute the work. In addition to image postprocessing, pixel operations can

be used, for example, to re-route tiles to a display wall (Section 4.1.2.4).

4.1.1.2 Asynchronous Messaging Layer

An asynchronous point-to-point messaging layer built on top of MPI is used to overlap

communication between nodes with computation. Objects that will send and receive

messages register themselves with the messaging layer and specify a unique global identifier.

Each registered object is seen as a global “distributed object,” with an instance of the object

on each rank that can be looked up by its global identifier. A message can be sent to the

instance of an object on some rank by sending a message to the rank with the receiver set as

the object’s identifier.

The messaging layer runs on two threads: a thread that manages sending and receiving

messages with MPI, and an inbox thread that takes received messages and passes them

to the receiving object. Messages are sent by pushing them on to an outbox, which is

consumed by the MPI thread. Nonblocking MPI calls are used to send, receive, prove, and

test for message completion to avoid deadlocks between ranks. Received messages are

pushed on to an inbox, which is consumed by the inbox thread. To hand a received message

to the receiving object, the inbox thread looks up the receiver by its global ID in a hash table.

Messages are compressed using Google’s Snappy library [95] before enqueuing them to the

outbox and decompressed on the inbox thread before being passed to the receiver.

The DFB initially also used the messaging layer to gather the final tiles to the display rank.

However, unless the rendering workload is highly imbalanced, this approach generates

a large burst of messages to the display, with little remaining rendering work to overlap

with. This burst of messages also appeared to trigger an MPI performance issue on some

implementations. As an optimization, the final tiles are instead written to a buffer, which is

compressed and gathered to the display rank with a single MPI_Gatherv at the end of the

frame.

101

4.1.2 Rendering with the Distributed FrameBuffer

A distributed rendering algorithm using the DFB consists of two components: a renderer,

responsible for rendering tiles of the image, and a tile operation, which will combine

the results of each rank’s renderer. The following sections discuss distributed rendering

algorithms built on the DFB, covering standard image-parallel (Section 4.1.2.1) and data-

parallel (Section 4.1.2.2) renderers, along with extensions to these methods enabled by the

DFB, specifically, dynamic load balancing (Section 4.1.2.1) and hybrid-parallel rendering

(Section 4.1.2.3). Finally, Section 4.1.2.4 discusses an example of how pixel operations can

be used to implement a high-performance display wall system.

4.1.2.1 Image-Parallel Rendering

An image-parallel renderer distributes the tile rendering work in some manner between

the ranks such that each tile is rendered once (Fig. 4.3). This distribution can be a simple lin-

ear assignment, round-robin, or based on some runtime load balancing. The corresponding

tile operation expects a single rendered tile as input. The DFB allows for a straightforward

and elegant implementation of this renderer (Listing 2). Although image-parallel rendering

is typically used for data-replicated rendering, where the data fit entirely in memory, it

can also be applied to large out-of-core data, where data are paged on demand between

ranks [65, 133], or off disk [293].

Rank 0

Rank 1

Distributed

FrameBuffer

Distributed

FrameBuffer

Fig. 4.3: An example of a simple image-parallel renderer using the DFB.

102

struct ImageParallel : TileOperation {

void process(const Tile &tile) {

// Omitted: copy data from the tile

dfb->tileIsCompleted(this);

}

};

void renderFrame(DFB *dfb) {

dfb->begin();

parallel_for (Tile &t : assignedTiles()) {

renderTile(t);

dfb->setTile(t);

}

dfb->end();

}

Listing 2: The tile operation and rendering loop for an image-parallel renderer using the
DFB.

The work distribution chosen by the renderer is not tied to the DFB tile ownership,

allowing the renderer to distribute work as desired. Although it is preferable that the

tile owners render the tiles they own to reduce network traffic, this is not a requirement.

This flexibility in work distribution can be used, for example, to implement dynamic load

balancing. The ImageParallel tile operation can be extended to support receiving a varying

number of tiles, and the renderer to assign each tile to multiple ranks. Each redundantly

assigned tile uses a different random seed to generate camera rays, thereby computing a

distinct set of samples. The rendered tiles are then averaged together by the tile operation,

producing a finished tile equivalent to a higher sampling rate. This approach is especially

useful for path tracing, as a high number of samples are required to produce a noise-free

image. Tiles with higher variance can be assigned to additional ranks, adjusting the

sampling rate dynamically. The tile assignment strategy chosen by the renderer can be based

on, e.g., estimating the number of samples needed per tile by measuring image variance;

the expected rendering cost of the tiles; or hardware performance, in a heterogeneous

environment.

4.1.2.2 Data-Parallel Rendering

A standard sort-last data-parallel renderer decomposes the scene into a set of bricks,

and assigns one brick per rank for rendering. Each rank renders its local data to produce

a partial image. The partial images are combined using a sort-last compositing algorithm

103

to produce an image of the entire data set. A data-parallel renderer is implemented using

the DFB by expressing the sort-last compositing operation as a tile operation, allowing the

compositing work to take advantage of the DFB’s asynchronous tile routing and processing

to execute the compositing in parallel with local rendering. The benefits of this approach are

two-fold: the per tile task dependencies allow minimizing compositing and communication

work per tile, and overlapping compositing and rendering reduces the additional time

spent compositing after rendering is finished.

To compute a per tile compositing dependency tree, each rank collects the bounds of the

other ranks’ data and projects them to the image (Fig. 4.4). Only those ranks whose data

projects to some tile will render inputs for it. Each rank is responsible for specifying the

dependency information for the tiles it owns (highlighted in yellow, Fig. 4.4). The tile owner

will compute an additional “background” tile and set it as the sole member of generation 0.

The background tile is filled with the background color or texture, and sets the number of

ranks whose data project to the tile as the number of children.

The renderer (Listing 3) begins by determining the set of candidate tiles that it must

either send a background tile for or render data to. The candidate tiles that the rank’s

Gen: 0

Children: 3}
Gen: 0

Children: 2

Rank 1

}

Gen: 0

Children: 4

Rank 2

} Gen: 0

Children: 2

Rank 3

}

Rank 0

Fig. 4.4: Tile ownership and dependency trees for a data-parallel renderer using the DFB.
Each rank owns its highlighted tile, and receives input tiles from ranks whose data projects
to the tile. Compositing runs in parallel to local rendering, reducing overhead.

104

1 void renderFrame(Brick local, box3f allBounds[], DFB *dfb) {

2 dfb->begin();

3 /* The rank touches the tiles it owns and those touched by the

4 * screen-space projection of its data

5 */

6 Tile tiles[] = array_union(dfb->ownedTiles(), dfb->touchedTiles(local));

7 parallel_for (Tile &t : tiles) {

8 bool intersected[] = intersectBounds(allBounds, t);

9 if (dfb->tileOwner(t)) {

10 fillBackground(t);

11 t.generation = 0;

12 t.children = numIntersected(intersected).

13 dfb->setTile(t);

14 }

15 if (intersected[local]) {

16 renderBrickForTile(t, local);

17 t.generation = 1;

18 t.children = 0;

19 dfb->setTile(t);

20 }

21 }

22 dfb->end();

23 }

Listing 3: The rendering loop for a standard data-parallel renderer.

local data may project to are found using a conservative screen-space AABB test, which

is subsequently refined. For each candidate tile, the renderer computes an exact list of

the ranks whose data touch the tile by ray tracing the bounding boxes. The number of

intersected boxes is the number of generation 1 tiles to expect as input to the tree. If the

rank’s local data were intersected, it renders its data and sends a generation 1 tile. To allow

for ghost zones and voxels, camera rays are clipped to the local bounds of the rank’s data.

As with the outer candidate tile loop, the inner rendering loop is parallelized over the pixels

in a tile.

After receiving the entire dependency tree, the AlphaBlend tile operation (Listing 4) sorts

the pixels by depth and blends them together to composite the tile. The tile fragment sorting

is done per pixel, in contrast to the per rank sort used in standard approaches. Sorting

per pixel allows for rendering effects like depth of field, side-by-side stereo, and dome

projections. As the tile processing is done in parallel, this sorting was not found to cause a

bottleneck. In the case that a rank-order sort produces a correct image, the dependency tree

can be constructed as a list instead of a single-level tree with tiles ordered back-to-front by

105

struct AlphaBlend : TileOperation {

Tile bufferedTiles[];

int currentGen, missing, nextChildren;

void newFrame() {

currentGen = 0;

missing = 1; // Expect a generation 0 tile to start

nextChildren = 0;

}

void process(const Tile &tile) {

bufferedTiles.append(tile);

if (tile.generation == currentGen) {

--missing;

nextChildren += tile.children;

checkTreeComplete();

}

if (!missing) {

sortAndBlend(bufferedTiles);

dfb->tileIsCompleted(this);

bufferedTiles = {}

}

}

// Check receipt of all children from all generations,

// advancing currentGen as generations are completed.

void checkTreeComplete() { /* omitted for brevity */ }

}

Listing 4: The sort-last compositing tile operation used by the data- and hybrid-parallel
renderers. It first collects the dependency tree, and then sorts and blends the pixels to
produce the composited tile.

generation. Finally, although the data-parallel renderer has been discussed in the context

of rendering a single brick of data per rank, it trivially supports multiple bricks per rank,

allowing for finer-grained work distributions or more complex data distributions.

4.1.2.3 Rendering Hybrid Data Distributions

A data-parallel renderer that statically assigns each brick of data to a single rank is

susceptible to load imbalance, coming from factors such as the data distribution, transfer

function, or camera position. Such uneven distributions of work can lead to a few ranks, or

even a single rank, becoming a bottleneck, and thus underutilizing the system. To better

distribute the workload, the same brick of data can be assigned to multiple ranks, with each

rank potentially assigned multiple bricks (Fig. 4.5). A more fine-grained work distribution

can also be created by subdividing the volume into more bricks than ranks. Each rank is

responsible for rendering a subset of the tiles the bricks it has project to, thereby dividing

106

the rendering workload for each brick among the ranks. Although partially duplicating

data across ranks increases the memory requirements of the renderer, additional memory is

often available given the number of compute nodes used to achieve an interactive frame

rate.

Gen: 0
Children: 3

Rank 0

Gen: 0
Children: 2

Rank 1

Gen: 0
Children: 4

Rank 2

Gen: 0
Children: 2

Rank 3

(a) Tile ownership and inputs to tile operations

(b) Rendering work assignment for shared data regions

Fig. 4.5: Sort-last hybrid-parallel rendering. (a) Each rank stores two data regions and
(b) shares the rendering work for each region among those ranks sharing the region. The
compositing tasks remain the same as the standard data-parallel case, but can achieve better
load balance.

107

Rendering such a configuration with a standard compositing approach is either difficult

or not possible, as the compositing tree and blending order is set for the entire framebuffer

by sorting the ranks [194]. However, the DFB’s per tile task dependency trees allow

renderers to change which ranks contribute tiles for each image tile independently. This

flexibility enables a direct extension of the data-parallel renderer discussed previously into

a hybrid-parallel renderer, which balances image and data parallelism to achieve better

load balance.

The concept of a “tile-brick owner” is introduced to develop the hybrid-parallel exten-

sion. Given a data set partitioned into a set of bricks and distributed among the ranks with

some level of replication, the renderer must select a unique rank among those sharing a

brick to render it for each image tile. The rank chosen to render the brick for the tile is

referred to as the “tile-brick owner.” Thus, the hybrid-parallel renderer can be implemented

by taking the data-parallel renderer and modifying it so that a rank will render a brick for

a tile if the brick projects to the tile and the rank is the tile-brick owner (Listing 5). The

task dependency tree and tile operation are the same as the data-parallel renderer; the only

difference is which rank renders the generation 1 tile for a given brick and image tile.

The current implementation of the hybrid-parallel renderer uses a round-robin assign-

ment to select tile-brick ownership; however, this is not a requirement of the DFB. A more

advanced renderer could assign tile-brick ownership based on some load balancing strategy

(e.g., [88]), or adapt the brick assignment based on load imbalance measured in the previous

frame. The strategies discussed for image-parallel load balancing and work subdivision in

Section 4.1.2.1 are also applicable to the hybrid-parallel renderer. For example, two ranks

sharing a brick could each compute half of the camera rays per pixel, and average them

together in the tile operation to produce a higher quality image.

The hybrid-parallel renderer supports the entire spectrum of image- and data-parallel

rendering: given a single brick per rank it is equivalent to the data-parallel renderer; given

the same data on all ranks it is equivalent to the image-parallel renderer; given a partially

replicated set of data, or a mix of fully replicated and distributed data, it falls in between.

108

void renderFrame(Brick local[], box3f allBounds[], DFB *dfb) {

dfb->begin();

Tile tiles[] = array_union(dfb->ownedTiles(), dfb->allTouchedTiles(local));

parallel_for (Tile &t : tiles) {

bool intersected[] = intersectBounds(allBounds, t);

if (dfb->tileOwner(t)) {

// Listing 3, lines 9-12

}

parallel_for (Brick &b : local) {

if (tileBrickOwner(b, t) && intersected[b]) {

// Listing 3, lines 15-18

}

}

}

dfb->end();

}

Listing 5: The rendering loop of the hybrid-parallel renderer. The DFB allows for an elegant
extension of the data-parallel renderer to support partially replicated data for better load
balancing.

4.1.2.4 Display Walls

The DFB can be used to implement a high-performance display wall rendering system,

as demonstrated by Han et al. [109], by using a pixel operation to send tiles directly to the

displays (Fig. 4.6). Tiles will be sent in parallel as they are finished on the tile owner directly

to the displays, achieving good utilization of a fully interconnected network. Moreover,

when rendering with the NONE image format, the image will not be gathered to the master

rank, avoiding a large amount of network communication and a common bottleneck. As

pixel operations are not tied to the rendering algorithm or tile operation, this method can

be used to drive a display wall with any of the presented renderers.

4.1.3 Implementation

Although the DFB is applicable to any tile-based rendering algorithm, it is implemented

and evaluated within the OSPRay ray tracing framework [291]. OSPRay provides a range of

built in volume and geometric primitives used in scientific visualization, advanced shading

effects, and achieves interactive rendering on typical workstations and laptops. OSPRay

implements its core rendering code for different execution backends through “Devices.”

For example, local rendering is done by using the LocalDevice. To achieve interactive

ray tracing performance on CPUs, OSPRay builds on top of Embree [294], the Intel SPMD

109

Fig. 4.6: A prototype display wall system using DFB pixel operations to send tiles in parallel
from an image-parallel path tracer.

Program Compiler (ISPC) [224], and Intel’s Threading Building Blocks (TBB).

Embree is a high-performance kernel framework for CPU ray tracing, and provides

a set of low-level kernels for building and traversing ray tracing data structures that are

highly optimized for modern CPU architectures. ISPC is a single program multiple data

(SPMD) compiler that vectorizes a scalar program by mapping different instances of the

program to the CPU’s vector lanes, thereby executing them in parallel. TBB provides a

set of parallel programming primitives for writing high-performance multithreaded code,

similar to OpenMP.

Prior to this work, OSPRay provided a MPIOffloadDevice that provided support for

image-parallel rendering. The performance of this device has been significantly improved

through this work, although it is exposed to users in the same manner as before. Users

can continue to run existing OSPRay applications with mpirun and pass the --osp:mpi

argument to the application, and OSPRay will replicate the scene data across a cluster

and render it image-parallel using the rendering algorithms described in Section 4.1.2.1 to

provide interactive high-quality rendering (Fig. 4.7).

The OSPRay API was originally designed for a single application rank passing its data

to OSPRay. Although OSPRay may offload the data in some way to other ranks, this is

done without the application’s awareness. This API works well for applications that do

not need to specify the data distribution; however, it is not applicable to those that do,

such as ParaView and VisIt. Maintaining an API that is familiar to users while extending

it to a data-distributed scenario poses some challenges. Furthermore, the API should

110

Fig. 4.7: A visualization of the 10243 Miranda [56] data set rendered interactively using
OSPRay’s volumetric path tracer, with support for scattering and volumetric lighting effects.

seamlessly support existing OSPRay modules, which have added new geometries [110,

283, 292, 297], volumes [230, 289, 295], and renderers [274] in a data-distributed setting. To

enable applications to leverage the distributed rendering algorithms provided by the DFB

in OSPRay, this work introduces a new distributed API and distributed device in OSPRay

through the MPIDistributedDevice.

4.1.3.1 Designing a Flexible Data-Distributed API

To make the rendering capabilities provided by the DFB available to distributed visual-

ization applications, the MPIDistributedDevice extends OSPRay with an API for rendering

distributed data. The bulk of the distributed API is similar to local rendering in OSPRay,

and should appear familiar to existing users. To use the distributed API, applications

can load the MPI module and select the MPIDistributedDevice. Each rank can then make

independent API calls to set up its local geometries and volumes, after which the distributed

scene can be rendered collectively using the algorithms described in Section 4.1.2. As the

DFB’s data-parallel renderer needs only the bounding boxes of each rank’s portion of the

data, the distributed API is nearly identical to local rendering, and supports existing user

geometry and volume modules without changes.

The distributed API makes a distinction between “distributed” and “local” objects.

Distributed objects track the global rendering configuration or scene layout (e.g., the

framebuffer, renderer, world, and futures), and they must be created and committed

collectively by the ranks to ensure the objects are synchronized properly. With the exception

of the list of instances and regions on the world, each rank should set the same parameter

111

values on distributed objects. Local objects represent local data, geometries, and volumes

and are created independently by the ranks. When using the distributed API, only rank 0

will be able to map the framebuffer to access the rendered image.

For rendering data- or hybrid-distributed configurations, applications must use the

mpiRaycast renderer, which implements the rendering algorithms discussed above. The

distributed API also adds an optional “regions” parameter to the OSPWorld, which is used

to specify one or more bounding boxes that bound the local data owned by the rank to

configure the compositor. The region list can be used to clip ghost zones, or to partition

nonconvex local data distributions into sets of convex regions that can be composited by

OSPRay’s sort-last compositor. If no regions are specified, the union of the bounds of the

local geometries and volumes is implicitly set as the rank’s region bounds. It is also valid

for some ranks to have no data in the scene, and thus no regions or instances in with world.

Finally, it is also possible to select only a subset of ranks to participate in rendering by

specifying the communicator that OSPRay should use. By default, OSPRay will use all

ranks in the MPI world; however, OSPRay uses an MPI + threads model for parallelism,

which, when integrating with an MPI-only simulation, may lead to oversubscribing the

nodes. Instead, the application could create a subcommunicator with one rank per node

and set this as OSPRay’s communicator. The data from other ranks on the node can then be

gathered to this OSPRay rank using shared memory.

4.1.3.1.1 Configuring the scene distribution using regions. The optional regions

parameter on the OSPWorld allows each rank to set one or more bounding boxes that

contain the data it owns for rendering. Arbitrary geometric and volumetric data can be

placed within the regions, including those implemented by user modules. Each region

corresponds to a unique piece of data that is owned the rank. Each rank can have zero or

more such regions, and can share ownership of regions with other ranks. When rendering,

only data contained within the local region bounds on a rank will be visible to camera

rays, although data outside are available for volume interpolation and secondary rays.

The regions allow applications to provide ghost zones for interpolation and AO, render

nonconvex and nondisjoint data distributions (Section 4.1.3.1.2), or share data between

ranks for hybrid-distributed and data-replicated rendering (Section 4.1.3.1.3).

112

4.1.3.1.2 Using regions to clip ghost zones and ensure convexity. Ghost zones, or

sometimes “halos,” are used in distributed rendering to ensure the image produced by the

distributed renderer matches that which would be produced by a renderer running on one

rank with the entire data set. For example, an extra layer of voxels is stored around the

volume subpiece owned by the rank to avoid interpolation artifacts between neighboring

ranks. Similarly, when rendering secondary effects such as ambient occlusion, additional

ghost geometries are used to prevent bright spots appearing at rank boundaries where

geometry would otherwise be missing. Regions are used only to clip camera rays, allowing

secondary rays to still intersect any ghost geometry that may exist outside the region

bounds.

The regions can also be leveraged to allow rendering nonconvex or nondisjoint data

distributions that would otherwise require redistributing the data when using other sort-last

compositors. OSPRay, as with other sort-last compositors, requires the partial images being

composited to correspond to convex, disjoint bricks of data. Without this requirement,

sorting and ordering the partial images to produce a correct final image may not be possible.

However, OSPRay’s distributed API allows each rank to specify one or more regions that

it owns. Each such region is treated as if it were owned by a unique rank, and rendered

to produce an independent set of partial image tiles that are given to the compositor.

Nonconvex data-distributions, such as those potentially arising in adaptive mesh refinement

simulations [3, 19, 20, 38, 55, 184, 207], can be virtually partitioned into a set of disjoint bricks

that are suitable for sort-last compositing (Fig. 4.8). This partitioning takes place only when

clipping rays against the region bounds in the renderer, and requires no movement or

adjustment of the underlying data.

4.1.3.1.3 Rendering of partially and fully replicated scenes. The regions list can

also be used to instruct OSPRay that two ranks are sharing one or more regions, by

specifying the same region bounds on each rank. If additional memory is available to

duplicate some or all of the scene data, ranks can share regions for better load balancing.

During the region exchange step when the world is committed, these shared regions are

found and merged in the global list of regions. Each unique region in the list corresponds

to a unique piece of data that must be rendered and composited independently. When

multiple ranks are found to share the same region, they switch to the hybrid-distributed

113

0

1 3

4

52

Fig. 4.8: An example of virtually partitioning an Octree AMR data set using regions. The
data are distributed among two ranks along the orange line and virtually partitioned using
regions to create a set of disjoint bricks that can be composited by OSPRay’s DFB. The three
regions created by each rank only virtually partition the data, leaving the underlying data
unchanged.

rendering algorithm discussed in Section 4.1.2.3. For example, if a region is found to be

especially expensive to render, that region can be duplicated onto other ranks for load

balancing, leaving the rest of the data as is.

If enough memory is available to fit the entire scene on each rank, the same data

and regions can be specified on all ranks. The distributed device can detect that all

ranks specified the same region, and switch to use an image-parallel rendering algorithm

(Section 4.1.2.1), allowing the use of any of the renderers from OSPRay’s local device. For

example, the path tracer can be used to provide high-quality secondary illumination effects

(Fig. 4.7).

4.1.4 Evaluation

To evaluate the performance of the DFB, a set of benchmarks is run on the render-

ing algorithms described in Section 4.1.2, using their implementations in OSPRay. The

benchmarks are run on two HPC systems, the Texas Advanced Computing Center’s

Stampede2 [263], and Argonne National Laboratory’s Theta [113], on a range of typical

image- and data-parallel rendering use cases (Fig. 4.9). To provide a direct comparison point

against standard sort-last compositors, a set of benchmarks are performed that compare

sort-last compositing using the DFB against IceT for a typical data-parallel use case. To

measure performance as the rendering workload varies, the benchmarks are taken while

114

(a) R-M with transparent isosurfaces. (b) DNS with transparent isosurfaces.

(c) 53 Cosmic Web subset. (d) Synthetic benchmark volume.

Fig. 4.9: The data sets used in the benchmarks. (a) Two transparent isosurfaces on the
Richtmyer-Meshkov [54], 516M triangles total. (b) A combined visualization of the 451GB
single-precision DNS [167] with two transparent isosurfaces, 5.43B triangles total. (c) A 53

subset of the 83 Cosmic Web [131], 7.08B particles rendered as transparent spheres. (d) The
generated volume data set used in the compositing benchmarks, shown for 64 nodes. Each
node has a single 643 brick of data.

115

rendering a rotation around the data set. Unless otherwise stated, the plots below show the

median performance over this camera rotation, with the median absolute deviation shown

as error bars. These measures are more robust to outliers, giving some robustness against

influence from other jobs on the system. All benchmarks are run with one rank per node, as

OSPRay uses threads on a node for parallelism.

Stampede2 and Theta consist of 4200 and 4392 Intel Xeon Phi KNL processors respec-

tively. Stampede2 uses the 7250 model with 68 cores, and Theta uses the 7230 model with

64 cores. Stampede2 contains an additional partition of 1736 dual-socket Intel Xeon Phi

Platinum 8160 SKX nodes. Although the KNL nodes of both machines are similar, the net-

work interconnects differ significantly, which can affect the performance of communication

in the DFB. Stampede2 employs an Intel Omni-Path network in a fat-tree topology, and

Theta uses a Cray Aries network with a three-level Dragonfly topology.

4.1.4.1 Image-Parallel Rendering Performance

The image-parallel rendering algorithm using is evaluated through a strong scaling

benchmark performed using OSPRay’s scientific visualization renderer. The Richtmyer-

Meshkov isosurface test data set is created by extracting two isosurfaces using VTK, which

are rendered with transparency and ambient occlusion (Fig. 4.9a). The strong scaling

benchmark is run on the Stampede2 SKX nodes at two image resolutions (Fig. 4.10).

Although the renderer begins to drop off from the ideal scaling trend as the local work per

node decreases, this could potentially be addressed by employing the work-subdivision

and load balancing strategies discussed in Section 4.1.2.1.

4.1.4.2 Data-Parallel Rendering Performance

To study the scalability of the DFB when applied to the standard data-parallel rendering

algorithm in Section 4.1.2.2, a set of strong scaling benchmarks is run using two large-scale

data sets on Stampede2 and Theta. On Stampede2, the benchmark renders a combined vi-

sualization of the DNS with transparent isosurfaces (Fig. 4.9b), and on Theta the benchmark

renders the 53 Cosmic Web subset (Fig. 4.9c). The results of these benchmarks demonstrate

that data-parallel rendering algorithms built on the DFB are able to provide interactive

frame rates for these challenging scenes and scale up performance with more compute.

Good scaling is observed on the Cosmic web from 32 to 64 nodes (Fig. 4.11). Although

116

2 4 8 16 32 64

Nodes

1

4

16

64

F
ra

m
es

 p
er

-s
ec

o
n

d
 (F

P
S

) 2048x2048
4096x4096

Fig. 4.10: Image-parallel strong-scaling on the R-M transparent isosurfaces data set on
Stampede2 SKX nodes. The image-parallel renderer using the DFB scales to provide
interactive rendering of expensive, high-resolution scenes.

performance begins to trail off the ideal trend beyond 128 nodes, absolute rendering

performance remains interactive. The DNS benchmarks exhibit near ideal scaling from

16 to 32 nodes (Fig. 4.12a); however, little performance improvement is observed when

scaling from 32 to 64 nodes, although some improvement is achieved when stepping from

64 to 128 nodes. To find the cause of the bottleneck at 64 nodes, a breakdown of time

spent rendering the rank’s local data and the compositing overhead incurred by the DFB is

shown in Fig. 4.12b. Compositing overhead refers to the additional time the compositor

takes to complete the image, after the slowest local rendering task has completed [101].

The performance breakdown shows that the bottleneck at 64 nodes is caused by the

local rendering task not scaling, which could be addressed by employing a hybrid data

distribution or the work-splitting techniques discussed previously (Section 4.1.2.3).

4.1.4.3 Compositing Performance Comparison with IceT

To perform a direct comparison with IceT for data-parallel rendering, the benchmark

uses a synthetic data set (Fig. 4.9d) that incurs little local rendering work on each rank.

Furthermore, the DFB’s data-parallel renderer is modified to support compositing with

IceT to ensure both methods perform the same local rendering work. The IceT renderer

follows the same code-path as the data-parallel renderer to render its assigned brick of data,

and then hands the framebuffer off to IceT for compositing. In preliminary tests, IceT’s

117

automatic compositing algorithm selection was found to give the best performance, and

this mode is used throughout the benchmarks.

In terms of overall scalability and performance, the DFB scales better then, or at least

similar to, IceT, while achieving better absolute rendering performance (Figs. 4.13a, 4.13c

and 4.13e). When comparing timing breakdowns (Figs. 4.13b, 4.13d and 4.13f) it is observed

that, as expected, the local rendering times are similar, and the performance difference is

due to the differing compositing overhead of the two methods. It is important to note that

some of the absolute difference in overhead is due to IceT’s synchronous design, which

makes it unable to overlap compositing with rendering. To account for this difference,

one can consider a hypothetical IceT implementation that does overlap compositing and

rendering by subtracting the local rendering time from the compositing overhead. However,

even when compared to this hypothetical implementation, the DFB still achieves similar

or superior compositing performance. Furthermore, when comparing the scaling trends

of the two approaches, the DFB scales similar to, or better than, IceT. Although a rigorous

comparison is difficult due to the different HPC systems used, the DFB follows similar

scaling trends as Grosset et al.’s DSRB [101], while providing greater flexibility.

Finally, the portability of the DFB can be evaluated by comparing the KNL runs on

Stampede2 (Figs. 4.13c and 4.13d) and Theta (Figs. 4.13a and 4.13b). The slightly different

KNLs on each system will have a minor effect on performance; however, any significant dif-

32 64 128 256

Nodes

1

2

4

8

16

F
ra

m
es

p
er

-s
ec

o
n

d
(F

P
S

) 2048x2048

4096x4096

Fig. 4.11: Data-parallel strong-scaling on the Cosmic Web data set on Theta. Nearly ideal
scaling is observed at moderate image sizes and node counts, with somewhat poorer scaling
at very high resolutions.

118

16 32 64 128

Nodes

2

4

8

16

32

F
ra

m
es

p
er

-s
ec

o
n

d
(F

P
S

) 2048x2048

4096x4096

(a) Overall rendering performance.

16 32 64 128

Nodes

0

200

400

600

T
im
e
(m
s)

Local 2048x2048

Compositing 2048x2048

Local 4096x4096

Compositing 4096x4096

(b) Timing breakdown of local rendering and compositing overhead.

Fig. 4.12: Data-parallel strong-scaling on the DNS with isosurfaces on Stampede2 KNLs.
The lack of scaling from 32 to 64 nodes is attributable to a poor local work distribution (b),
which can be partially addressed by using the hybrid-parallel renderer built on the DFB.

ferences are attributable to the differing network architectures and job placement strategies.

The benchmarks on Stampede2 exhibit a rather bumpy scaling trend where, depending on

the image size, a temporary decrease in the compositing performance is observed at certain

node counts. The benchmarks on Theta follow a smoother trend, with better absolute

compositing performance. By default, the DFB compresses all messages; however, disabling

compression was found to provide better performance on Theta, whereas the runs on

Stampede2 encountered significant MPI messaging performance issues at 16 nodes and

up without compression. Thus, compression is left as an option to users that is enabled by

119

4 8 16 32 64 128 256
Nodes

0

50

100

150

200

250

300

350

T
im
e
(m
s)

OSPRay 2kx2k
IceT 2kx2k

OSPRay 4kx4k
IceT 4kx4k

(a) Theta total time.

4 8 16 32 64 128 256
Nodes

0

50

100

150

200

250

300

T
im
e
(m
s)

OSPRay Local 2kx2k
OSPRay Overhead 2kx2k
IceT Local 2kx2k
IceT Overhead 2kx2k

OSPRay Local 4kx4k
OSPRay Overhead 4kx4k
IceT Local 4kx4k
IceT Overhead 4kx4k

(b) Theta breakdown.

4 8 16 32 64 128 256

Nodes

0

50

100

150

200

250

300

350

T
im
e
(m
s)

(c) Stampede2 KNL total time.

4 8 16 32 64 128 256

Nodes

0

50

100

150

200

250

300

T
im
e
(m
s)

(d) Stampede2 KNL breakdown.

4 8 16 32 64 128 256

Nodes

0

10

20

30

40

50

60

70

80

90

T
im
e
(m
s)

(e) Stampede2 SKX total time.

4 8 16 32 64 128 256

Nodes

0

10

20

30

40

T
im
e
(m
s)

(f) Stampede2 SKX breakdown.

Fig. 4.13: Compositing benchmark performance comparison of the DFB and IceT on the
synthetic data set. The DFB achieves better, or at least similar, scaling as IceT, while
providing faster absolute rendering times. In the timing breakdowns (d-f), This difference
is primarily due to the DFB achieving a significant reduction in compositing overhead.

120

default at 16 nodes. In the benchmarks compression is disabled on Theta and enabled at 16

nodes and up on Stampede2. IceT uses a custom image compression method, which is not

easily disabled.

4.1.4.4 Hybrid Data Distribution Rendering Performance

The impact of partial data replication on load balance can be observed by studying

the per frame overall time on the DNS with isosurfaces data set on Stampede2 (Fig. 4.14).

The volume is partitioned into as many bricks as there are ranks, with bricks redundantly

assigned to ranks based on the available memory capacity. When using 64 KNLs, there

is enough memory to store two bricks per rank, with 128 KNLs it is possible to store up

to four. The rendering work for each brick will be distributed among two or four ranks,

respectively. The redundant bricks are distributed using a simple round-robin assignment.

A brick distribution based on, e.g., some space filling curve or runtime tuning, could provide

additional improvement.

In both the 64 and 128 node runs, the two brick per node configuration provides a

consistent improvement over no replication. This improvement is more pronounced for

camera positions with greater load imbalance. There are larger fluctuations in rendering

performance when storing four bricks per node, although at times the four-brick configura-

tion does outperform the two-brick one. These larger fluctuations could be due to increased

memory traffic, which is alleviated as data are cached in the KNL MCDRAM. This theory

is further supported by the sharp spikes in performance, when new data must be fetched

from RAM.

4.2 A Virtual Reality Visualization Tool for
Neuron Tracing

Brain function emerges from the coordinated activity of billions of interconnected

neurons that form dense neural circuits. A central goal of neuroscience is to understand

how these circuits’ computations relate to behavior. The field of connectomics is founded

on the principle that understanding the precise wiring of these circuits, i.e., the location of

neurons and the connections between them, is crucial to comprehending brain function at a

mechanistic level. More insight into the fundamental connectivity within the brain also has

the potential to lead to breakthroughs in the understanding of brain diseases and open new

121

0 50 100 150 200 250 300

Frame

100

200

300

400
T
im
e
(m
s)

1 Brick

2 Bricks

(a) Per frame render time on 64 Stampede2 KNLs, at 4096× 4096

0 50 100 150 200 250 300

Frame

100

150

200

250

T
im
e
(m
s)

1 Brick

2 Bricks

4 Bricks

(b) Per frame render time on 128 Stampede2 KNLs, at 4096× 4096

Fig. 4.14: Improving load balancing on the DNS with isosurfaces with partial data-
replication in the hybrid-parallel renderer. Sharing rendering between two nodes (two
bricks per node) gives a consistent improvement, between four tends to give further
improvement.

avenues for treatment.

However, obtaining a comprehensive wiring diagram of even relatively small and simple

mammalian brains, such as that of a mouse, is a massive undertaking. Similar projects

in species with larger brains that are evolutionarily closer to humans, such as nonhuman

primates (NHPs), take more time and are more complex. To date, the only species whose

nervous system has been completely mapped is the nematode Caenorhabditis elegans [301],

which is comprised of only 302 neurons. Currently, the majority of connectome efforts

are focused on mapping the mouse brain [29, 35]. However, with recent advances in high-

122

resolution tissue labeling [181], optical tissue clearing [50,315], and deep tissue imaging [66],

mapping the NHP brain at mesoscopic scale is becoming feasible. One major impediment

to mapping the NHP brain is the time-consuming, laborious effort of manually tracing

labeled neuronal connections through the brain.

A typical neuron imaging and tracing workflow proceeds as follows. First, neurons and

their processes are labeled using neuroanatomical tracing methods. Modern approaches

to labeling neurons in large brains involve the use of viral vectors carrying the genes for

fluorescent proteins [181]. These vectors are injected into the brain to induce expression

of these genes within neurons, labeling them at high resolution. Current approaches in

connectomics then render the brain optically transparent using clearing techniques such

as CLARITY [50], PACT [315], or SWITCH [198]. Imaging labeled neurons through brain

tissue, either in brain slices or through whole brains or blocks, produces multiple stacks of

images ranging in size from gigabytes to terabytes. Finally, neurons are traced on these 2D

image stacks to extract the desired neuronal structures. Depending on the analysis being

performed, these structures can be used in simulations or overlaid onto functional maps

of the brain, in order to understand the connectivity between brain regions or cells within

these regions.

Automated methods for neuron reconstruction continue to improve, with recent works

leveraging machine learning techniques [9, 261]. However, neuroscientists often find the

results of these algorithms unsatisfactory [174]. Thus, tracing neurons remains primarily

a manual task. Meijering [190] noted that data quality was the primary reason these

algorithms fail in practice, as the current state-of-the-art methods provide error-free results

only in highly optimal conditions. For a full review and comparison of recent methods, see

the surveys by Magliaro et al. [185] and Acciai et al. [2]. Many labs, such as the Angelucci

lab, employ several trained undergraduate students who are responsible for the bulk of

the tracing work. Tracing is done on a desktop computer using NeuroLucida [188]. When

working on image stacks using this software, the user scrolls through the stack and clicks

to mark points along the neuron or to create branches. However, some branches change

depth rapidly, cross in complex ways, or have gaps due to imperfections in the labeling or

imaging process, making the structure difficult to resolve.

Beyond the mechanics of tracing, another challenge is that microscopy technology

123

is rapidly outpacing the supporting tools in terms of raw data size. State-of-the-art

microscopes regularly produce terabytes worth of images, yet few existing tools are capable

of handling data at this scale. Notably, the TeraFly [34] plugin for Vaa3D [220] supports

paging in hierarchical volume data to explore large data sets. Other tools are often limited

by the RAM capacity of the system.

This sections presents a collaborative effort undertaken with trained neuroanatomists to

develop a VR tool for neuron tracing using off the shelf consumer VR systems. The VRNT

demonstrates that, when combined with state of the art data management and visualization

techniques, the immersive and intuitive interface provided by consumer VR can provide

a compelling environment to enhance the workflow of connectomics researchers. The

following sections detail the design process (Section 4.2.1), the final design and technical

aspects of the neuron tracing tool created through this process (Section 4.2.2), and a pilot

study conducted to evaluate its effectiveness (Section 4.2.3).

4.2.1 Design Process

Independent of this work on neuron tracing in VR described in this section, a technology

probe was developed (Section 4.2.1.1) with the goal of investigating consumer-grade VR

for scientific visualization. One of the data sets used while testing the technology probe

was a large microscopy scan acquired by the Angelucci lab, which was down-sampled to fit

on the GPU. Positive feedback from an incidental demonstration of this probe prompted

further exploration of into using VR for neuron tracing. The VR neuron tracing tool was

developed in close collaboration with expert neuroanatomists from the Angelucci lab in

an open-ended, iterative process, influenced by the nine-stage framework of Sedlmair et

al. [253]. Several iterations were made to distill the fundamental user requirements and add

the necessary features to arrive at the tool discussed in Sections 4.2.2 and 4.2.3. A screenshot

from the VRNT is shown in Fig. 4.15.

4.2.1.1 Technology Probe

The technology probe was designed to explore the potential of using VR systems for

generic scientific visualization tasks, and supported volume rendering, isosurfaces, and

particle rendering (Fig. 4.16a). The user sits or stands at a desk and is able to move his

or her head to look at the volume, or translate and rotate it using a gamepad. An initial

124

Fig. 4.15: A screenshot of the VRNT using the isosurface rendering mode. The dark gray
floor represents the extent of the tracked space. Users can orient themselves in the data set
via the minimap (right), which shows the world extent in blue, the current focus region
in orange, and the previously traced neuronal structures. The focus region is displayed
in the center of the space. The 3D interaction and visualization provides an intuitive
environment for exploring the data and a natural interface for neuron tracing, resulting in
faster, high-quality traces with less fatigue reported by users compared to existing 2D tools.

(a) Initial Technology Probe (b) Prototype

Fig. 4.16: The technology probe and prototype were used to explore different interaction
and rendering possibilities for scientific visualization and neuron tracing in VR.

125

demonstration of this system to neuronatomists in the Angelucci lab with microscope scans

of labeled neurons encouraged further pursuing VR to develop a tool for neuron tracing.

In particular, the neuroscientists noted that, compared to standard 2D interfaces, the VR

system allowed better perception of the spatial relations between neurons, one of the key

challenges in neuron tracing. However, in the technology probe, the ability to interact

with the data was limited by the restriction of the Oculus DK2 head-mounted display

(HMD) [203] and the use of a gamepad as the input device. The Oculus DK2 can track small

head movements while the user is facing a webcam style tracker, but does not support

walking around a room. Although the gamepad can be configured as a 6 DOF controller, it

is not tracked and thus cannot be used to reach out and “touch” the data directly.

The desire for direct 3D manipulation motivated the pursuit of a different interaction

paradigm, built using the HTC Vive platform [126]. The HTC Vive supports room-scale VR

and includes tracked, wand-style controllers. The room-scale tracking allows users to walk

around, as well as into the data, and interact with the data naturally using their hands. Tilt

Brush [96], which uses the same wands to paint in 3D, inspired the first prototype of the

neuron tracing tool, which extended the painting metaphor to neuron tracing.

4.2.1.2 The Prototype

The first prototype dedicated to neuron tracing was designed to evaluate what different

types of interactions would be useful, and explore how they could be mapped to the HTC

Vive’s control scheme. Based on the available space and hardware setup, a medium-sized

tracked area was set up, about 2.5m× 2m, and the data placed in a 1.53m box in the center

of the room at about 1m above the ground. The prototype used both wands, one to interact

with the data and the other to navigate the space. Using the first wand, the user could

hold a button and draw a line coming from the tip of a tetrahedron shown in the middle of

the wand’s loop (Fig. 4.16b). Only a 2563 subregion of the volume could be rendered at a

sufficient framerate for VR (see Section 4.2.2.2). This subregion is referred to as the focus

region. The subregion was placed in the 1.53m box in the center of the VR space. The second

wand could then be used to grab and move the data within this region. A minimap was

placed in the corner of the room to orient users within the data set. The minimap displayed

the data set bounds and the focus region’s location within it. One notable observation was

126

that given the opportunity to pan, users often preferred to drag neurons closer as opposed

to walking toward them.

As neuroanatomists are not familiar with transfer function design, even in a desktop

setting, the prototype uses a fixed preset for the data sets, allowing neuroanatomists to

focus solely on the task of tracing. Selecting from chosen presets has been found effective

in medical visualization and museum installations [318], where users are also unfamiliar

with designing transfer functions. Moreover, designing an effective interface for specifying

transfer functions in VR is an open and challenging problem.

To evaluate the initial design of the tracing interaction, the neuroanatomists were asked

to trace neurons in some data sets acquired by the Angelucci lab. After a short introduction

to the control scheme (about 10 minutes), they were free to use the tool as desired. These

users noted that the painting metaphor was intuitive. Compared to existing 2D tools, they

found the prototype easier to use for exploring the data, allowing them to better resolve

complex crossings and spatial relations of neurons in the data.

The prototype, despite being limited to line drawing and simple exploration, provided

an initial validation of both the navigation and interaction design. To extend the prototype

to a minimally viable tool, additional features that were typically used by neuroanatomists

in the neuron reconstruction and analysis process in NeuroLucida were added to the VR

tool. For example, color is used to distinguish axons and dendrites, and glyphs to mark

areas of interest. NeuroLucida also allows for undoing operations and editing previous

traces, which permits review and correction of previously traced neurons. Therefore,

the initial prototype was extended by improving the tree drawing system and rendering

quality, adding support for undoing and editing, placing markers, selecting line colors,

and streaming large volumes from disk. Additional exploration was also conducted to

expand the interaction paradigm by integrating haptic feedback. These improvements are

incorporated into the current tool described in the following section.

4.2.2 Virtual Reality Neuron Tracing Tool

The design of the final tool focuses on two key aspects: the process of tracing and

navigating (Section 4.2.2.1), and meeting the VR rendering performance requirements to

provide a high-quality experience and prevent motion sickness (Section 4.2.2.2). To analyze

127

how scientists use the system and allow for its use as a training device, it also provides

a recording and playback system (Section 4.2.2.3) that tracks the user’s actions for later

playback. Finally, the tool must fit into a larger data processing pipeline, which starts at the

acquisition of volume data from a microscope and ends with the simulation and analysis

of the reconstructions in the context of other brain maps. To fit well into the pipeline, the

tool loads the IDX [215] volume format used by the Angelucci lab. Once the neurons of

interest have been reconstructed, the data are exported in a standard XML format used by

NeuroLucida. Furthermore, previously traced neurons in this format can be opened in the

VRNT, allowing for inspection and editing of earlier work.

4.2.2.1 Tracing and Navigation

Tracing neurons and navigating the data are the key tasks when reconstructing neurons.

Both interactions require the 3D motion to be intuitive, and therefore both interactions

are mapped to the motion of each wand. One wand is used for tracing and the other for

navigation (Fig. 4.17). Tracing and navigation actions are initiated by holding the trigger

button on the corresponding wand. In the VR environment, the tracing wand is displayed

with an icosphere at the top, indicating from where the line will be drawn, similar to a paint

brush (Fig. 4.17a). The navigation wand is rendered to match the wand’s physical model

(Fig. 4.17b).

A neuron forms a tree that consists of a starting point, branch points, and termination

points. Traces created by the user are stored in a graph structure that is updated with the

user’s edits and additions. To trace a neuron (Fig. 4.18), the user presses and holds the

trigger button on the tracing wand, placing a starting point. The user then holds the trigger

as he or she follows the neuron through the data, drawing a line from the brush. Releasing

the trigger ends the line and creates the termination point. The user is then free to continue

the line from the termination point, or trace branches as needed.

Tracing the branches of a neuron correctly is critical to properly recover its connections

and structure. Moreover, this task is performed often, and therefore it must be easy to do.

To create a branch, the user can start a new line along the current tracing and follow the

neuron branch out (Fig. 4.19a), or start a new line on the neuron branch and reconnect to

the parent tree (Fig. 4.19b). To call attention to the re-connection, the VRNT highlights the

128

(a) Tracing wand (b) Navigation wand

Fig. 4.17: The wand model shown in VR can be changed from the physical model. On
the tracing wand (a), the top loop seen in (b) is removed to avoid occlusion while tracing.
The button sticking out underneath (a) is the trigger, and the large circular button is the
trackpad. The icosphere brush in (a) is colored to match the selected line color.

Fig. 4.18: From left to right: the neuron tracing process begins by finding a neuron. A
starting point is placed by moving the brush inside the neuron and pressing the trigger.
While holding the trigger, the user follows the neuron with the brush, tracing it. To end the
line, the trigger is released.

(a) Branching from an existing line (b) Connecting a branch back to the parent tree

Fig. 4.19: A branch can be created by placing the brush close to an existing line, where a
candidate branch point will be shown (a), or an existing node, and tracing from it. The
branch can also be started as a new line and reconnected to the parent tree (b), in which
case the candidate branch point created by the connection is shown.

129

selected node and sends a small vibration to the wand to give a “click” feeling of selecting

it. When connecting back to a line, the candidate node that would be created when the

trigger is released is displayed as a small cube to indicate where the branching point will be

placed (Fig. 4.19b). The visual and physical feedback provides a clear signal to the user that

the connection has been selected as desired.

During the tracing process, mistakes may be made that need to be corrected. For

example, the user may have an incorrect initial understanding of a complex crossing, the

user’s hand could slip, or the system could drop a frame or momentarily lose tracking

due to occlusion. Depending on the type of mistake, the user may make an immediate

correction or revisit the error later. To correct mistakes, the tool provides two methods of

undoing and editing: a quick fine-grained undo operation and the ability to remove entire

lines and nodes at any time.

To immediately correct mistakes, the user can undo lines in the reverse order in which

they were created by pressing the trackpad (Fig. 4.17). This undo is useful for quickly

repainting segments where the user is not satisfied with how well the trace follows the

neuron. The scope of the undo operation is controlled by placing undo breakpoints along

the line every 40 voxels, with each undo operation reverting to a previous breakpoint.

Furthermore, any part of the line can be repainted by drawing a new line over the

problematic section and reconnecting it after the section. The new line forms a loop in the

trace, and the old section will be removed to reduce the graph to a tree. Since a neuron is

physically a tree, any loop represents an invalid structure and can be assumed to be an edit.

Scientists may notice errors when revisiting a previously traced section. The undo and

line redrawing operations may not be applicable in such instances. Instead, the user can

delete specific lines or nodes with the tracing wand. Editing operations are initiated by

selecting a line or node with the wand, noted by highlighting the feature and a “click”

vibration, and pressing the undo button. The user can then reconnect the disconnected trees

as desired. For example, in Fig. 4.19a the selected line (left) or the highlighted node and

attached edge (right) could be deleted by pressing undo.

Navigation around the data set is accomplished by walking or by translating the volume.

Within the focus region, the user is able to walk around the space to navigate. To explore

data outside the focus region or pull the regions closer, a panning action is mapped to

130

the navigation wand. By holding the trigger button and moving the wand, the user grabs

the focus region and translates it through the volume. Via this interaction, arbitrary-sized

volumes can be explored using the VRNT. Furthermore, as volume sizes are often larger

than available GPU memory, the data are paged on and off as the user pans, described in

detail in the following section. To help users track the location of the focus region relative to

the data set and previously traced neurons, a minimap is displayed in a corner of the virtual

environment (Fig. 4.15). When navigating large data sets, the minimap is useful to keep the

user oriented as he or she pans through the space. Traced neurons are also displayed in

the minimap to help users track their progress through the data set. To allow navigating at

larger scales or getting an overview or close up view of the data, the VRNT also provides a

zoom interaction. Zooming is performed by holding the grip buttons on both controllers

and moving them further apart or closer together.

4.2.2.2 Rendering

The HTC Vive uses a display panel with a resolution of 2160× 1200, providing 1080×

1200 pixels per eye at a 90Hz refresh rate. Furthermore, due to lens distortion, it is

recommended to supersample the image, effectively doubling the number of rendered

pixels. Additionally, the VR environment imposes stringent lower bounds on the acceptable

framerate to avoid motion sickness. The combination of high-resolution and frame-rate

requirements presents a significant challenge compared to traditional desktop visualization,

where low framerates and intermittent pauses for computations or data loading are more

tolerable. To meet these requirements, we take cues from best practices for VR game

development [286]. In order to communicate with the HTC Vive HMD, VRNT uses the

OpenVR SDK, which provides methods for sending images to the eyes and tracking the

head and wand positions.

Meeting the 90 frame per second (FPS) rendering target of VR places a tight rendering

budget on the tool of about 11ms to render each frame, from which 1ms is potentially

consumed by the operating system. Furthermore, as GPUs are pipelined architectures,

submitted work is not executed immediately, but enqueued into a command buffer. To

account for this, Vlachos [286] recommends submitting draw calls ≈ 2ms before VSync.

Submitting early allows the GPU to start rendering immediately after presenting the

131

previous frame, increasing utilization.

Streamlining rendering performance requires pushing all nonrendering or noncritical

work onto background threads and strictly budgeting work on the render thread. A single

frame is divided as shown in Fig. 4.20. First, VRNT waits until ≈ 2ms before VSync by

calling WaitGetPoses from the OpenVR SDK (left side of CPU in Fig. 4.20), which obtains

the most recent head position. After returning from this function, all rendering work

is submitted to the GPU. Opaque geometry, e.g., the wands and tracings, is rendered

first (1ms). Next, the volume is rendered with raymarching to display a volumetric or

implicit isosurface representation (4ms). After submitting the rendering work, VRNT starts

the asynchronous volume data upload based upon the user’s focus region, and once the

rendering finishes, copies the uploaded volume data into the sparse texture (2ms). This

time budget leaves a buffer of 3ms to prevent unpredictable interferences that could cause

dropped frames. Nevertheless, sometimes a system event or an expensive draw call can

consume this buffer, causing a frame to be skipped. When this occurs, the OpenVR SDK

will automatically render at half framerate, 45 FPS, while reprojecting the last frame using

the latest head tracking information to display at 90 FPS, until the framerate improves.

Unfortunately, the reprojection cannot account for motion of the wands, as the image

transform is based only on the head motion. When the system is reprojecting, the wands

appear to stutter, making the interaction feel sluggish.

Care must also be taken to support smoothly zooming out on the data during naviga-

tion. Zooming out increases the number of voxels visible in the focus region, potentially

degrading performance below 90FPS. To maintain an acceptable framerate, VRNT switches

to a lower resolution volume to reduce the rendering load; when the user returns to the

original zoom level, VRNT switches back to the full resolution data. The tool is able to

quickly switch between these two volumes by leveraging the IDX format’s support for

multiresolution queries and the data streaming system discussed below by running two

such data streaming systems simultaneously: one that is responsible for the high-resolution

data, and a second that is responsible for the lower resolution data shown when zoomed

out.

4.2.2.2.1 Data streaming. Typical microscopy volumes exceed the VRAM of current

GPUs (4-24GB) and in most cases the RAM of typical workstations (64-128GB); data sets can

132

commit and copysubmit uploadCPU

GPU geom volume streaming

VSync VSync

WaitGetPosesWaitGetPoses

Fig. 4.20: The anatomy of a single frame. WaitGetPoses blocks until ≈ 2ms before VSync
and returns the latest head tracking data, which allows the renderer to start submitting
work before VSync to fully utilize the GPU. Draw calls for the geometry and volume are
submitted first, after which the asynchronously uploaded volume data are paged in to the
sparse texture.

range from hundreds of gigabytes to terabytes. Exploring such data sets inherently requires

a data streaming solution. Moreover, as only 2ms is budgeted for data streaming on the

render thread, the work of updating the volume data must be amortized over multiple

frames, with as much work performed asynchronously as possible. VRNT uses a two-level

caching system: the first level loads and caches pages from disk into RAM, and the second

level takes these pages and uploads them to the GPU. The caching system lets the tool keep

the current focus region and a small neighborhood resident on the GPU, while a substantial

history is cached in RAM. The cache drastically reduces disk access frequency and latency

to display pages as users navigate.

The first-level cache takes page requests and immediately returns a future, which can be

used to retrieve the page data. In case the page is not available in the cache, a worker thread

will be responsible for loading the data from disk, while the requester can asynchronously

check for completion and retrieve the page. The second-level cache pushes page queries

to a set of worker threads, which request the page from the first-level cache and copy the

data into persistently mapped pixel buffer objects (PBOs). By uploading via persistently

mapped PBOs, the caching system takes advantage of asynchronous data transfers via the

GPU’s copy engines, thereby overlapping rendering work with data transfers.

The volume data are stored on the GPU in a sparse 3D texture, a form of virtual

memory where individual pages can be committed or decommitted. This texture allows for

transparent handling of volume data larger than VRAM. The rendering work for a frame

takes long enough for the asynchronous data upload to complete, after which the page is

copied into a newly committed page in the sparse 3D texture (commit and copy, streaming

133

segments of Fig. 4.20). The system uploads only a limited number of pages per frame to

stay within its time budget and decommits pages no longer needed.

To minimize visible popping of pages into view, the cache loads a box slightly larger

than the focus region and prioritizes pages closer to the user’s view. To avoid overwhelming

the paging system by requesting many unneeded pages and creating a large backlog, e.g.,

in the case of quickly panning through the space, only the four highest priority new pages

are enqueued each frame. Additionally, if a page is no longer needed by the time the PBO

is filled, the page is not committed or copied to the texture, as it would be immediately

decommitted. This scheme of limiting the enqueueing rate provides faster responsive times

and lends itself to a simpler implementation compared to updating priorities for already

scheduled pages in a nonblocking thread-safe manner.

4.2.2.2.2 Volume rendering. VRNT uses a GPU volume renderer written in GLSL [107].

Although the volume data are stored in a sparse 3D texture, this texture type requires no

additional consideration in the GLSL code. Sampling missing pages is defined to return 0. In

the raymarching step, the volume renderer uses the depth buffer produced by rendering the

opaque geometry to terminate rays early in order to correctly composite with the geometry,

wands, and tracings.

In a VR application, it is common to step inside the data set. However, when walking

through the volume, it appeared to vibrate, or the isosurface to move subtly. As the camera

moves through the volume, the voxels sampled by rays leaving the eye will be offset

differently in the data, causing them to sample slightly different locations. This artifact

can be mitigated by increasing the sampling rate, but such mitigation is prohibitively

expensive for VR. The artifact is fundamentally similar to ensuring correct ray sampling

across subvolumes in distributed volume rendering [183]. To ensure consistent sampling of

the data when inside the volume, the renderer begins sampling at the sample point nearest

to the clipping plane, based on starting the ray from its entry point into the volume bounds.

This approach corrects only for translation, but was found to be sufficient in practice.

Even when using gradient shading, depth perception can be challenging in volume

rendering, particularly when using transparent transfer functions and subtle lighting cues.

This lack of depth cues can make it difficult to tell the exact position of the wands when

placed inside neuronal structures, due to the faint occlusion effect provided by the volume.

134

In fact, during the pilot study, one user reported experiencing eye strain while viewing the

volume representation, potentially due to the limited depth cues. More advanced rendering

techniques such as shadows or global illumination [139] can improve depth perception, and

potentially user performance, but come at significant frame-rate or memory cost, making

them challenging to apply in a VR setting. To maintain a sufficient framerate for VR, the

volume rendering quality in VRNT is relatively simple, providing just gradient shading.

To enhance depth cues, VRNT provides the ability to switch to an implicit isosurface

mode, with Phong shading and ambient occlusion [118]. In the isosurface mode, the user

can scroll on either of the two wands’ trackpads to change the isovalue, which is necessary

to resolve crossings or neurons with low intensity values. The front faces of the isosurface

are rendered to be semitransparent, allowing the user to see when the brush and traces are

placed well inside the neuron. The back faces, however, are rendered to be fully opaque,

as it is difficult to perceive depth relations when they are semitransparent. When dealing

with noisy data such as microscopy images, isosurfaces are often not ideal, as the noise

manifests as small objects in the volume. Especially in a VR environment, these objects

result in distracting aliasing artifacts. To counter this effect, volume pages are filtered before

they are uploaded to the GPU; the filtering process removes objects less than 11 voxels in

size by finding and removing small connected components.

The performance of volume raycasting is directly tied to the number of rays rendered,

i.e., the number of shaded pixels. The rendering resolution recommended by the HMD

is very high; fortunately, this resolution is needed only at the center of each eye. In the

periphery, due to lens distortion and the properties of the human vision system, it is possible

to render at much lower resolutions (e.g., using the NV_clip_space_w_scaling extension)

with little to no perceived difference.

4.2.2.3 Recording and Replaying

Evaluation and iteration of any tool requires understanding how it is used. Moreover,

a recording of an expert’s session can serve as training material for novices. In desktop

applications, user sessions can be recorded using screen recording software. However,

recording the “screen” in VR restricts the playback to a single viewpoint, potentially

removing relevant context in the space. For example, a mistake made when tracing may

135

depend on the user’s viewpoint, but to properly observe the situation, it must be possible

to watch the user’s session from a viewpoint different from the recorded one. Even more

concerning is that viewing the recording in VR typically induces nausea due to the mismatch

in the recorded head motion and the viewer’s head motion. To this end, VRNT provides

a recording and playback system for tracking user sessions that is based on the actions

performed by the users, instead of video recording.

Such action-based recording can be performed at multiple levels. The low-level wand

and HMD state and poses could be saved each frame, the tracing could be played back by

stepping through snapshots, or the user’s logical operations (e.g., tracing, toggled isosurface,

or panning) could be saved. The last option provides the most flexibility for both playback

and later analysis. This option also supports playback of the recording on different VR

systems or later iterations of the tool with different control schemes, without needing to

re-map low-level button presses or HMD information. Moreover, session analysis is easier

with such a representation, as queries can be made at a higher level, e.g., “how far does

the user trace in a single motion?” or “how long did they use each rendering mode?”.

Replaying a saved session recreates the entire tracing by moving the wands and HMD as

they were during the session. By viewing the hand and head motions during the replay, it

is possible to observe differences in how users work. During this time, the user viewing the

replay can walk around the space independently.

4.2.3 Evaluation

A pilot study was performed with trained neuronatomists to evaluate the design choices

made and compare VRNT to state-of-the-art desktop software. The pilot study involved

tracing neurons in two distinct data sets and is run with seven users. The neuroanatomists

in the Angelucci lab use NeuroLucida, a standard and widely used desktop software

package for neuron tracing, in their day-to-day work. Thus, NeuroLucida is used as the

desktop software baseline against which VRNT is compared. In practice, the two primary

metrics of concern are accuracy and speed. In terms of accuracy, the goal is to determine

the connectivity of neurons as well as possible, including geometric location and tree

topology. Misinterpreting a crossing as a branch point or missing branches entirely will

cause substantial errors in the subsequent analysis. Nevertheless, as usual in expert-driven

136

(a) Reference (b) Branch missing (c) Subtree missing

Fig. 4.21: Examples of different mistakes and their effect on the DIADEM score. Trees (b)
and (c) are compared against the reference (a) with scores 0.875 and 0.5, respectively. The
error in (c) misses a large subtree, impacting later analysis more significantly than the error
made in (b).

systems, the final result is subjective, and experts sometimes disagree on specific choices.

Furthermore, some mistakes are more critical than others. Slightly elongating a trace by

crossing a small gap may be acceptable, but erroneously attaching a branching structure is

not. In terms of speed, the field of connectomics is moving to acquisition of ever increasing

amounts of data; therefore, the time necessary to trace neurons is of significant concern.

The DIADEM scoring method is used to automatically compare traces [92], the scoring

method takes into account both the length and the connectivity of a trace. The computed

score correlates well with expert judgment, and informal comparisons suggest it is a

reasonable proxy for accuracy. The score measures the similarity between traces with values

ranging from 0 (dissimilar) to 1 (identical). For example, missing a small branch in a large

tree (Fig. 4.21b) has a smaller impact on the score than missing a large subtree (Fig. 4.21c).

The first data set consists of six aligned subvolumes containing 34 mostly planar axons,

each with a reference tracing (Section 4.2.3.1). The second data set is a single large volume

containing several noisy cell bodies (Section 4.2.3.2). In both cases, users are provided a

predetermined set of points from which they start tracing a neuron in each tool. To avoid

bias, the starting points are split into two sets that are traced on alternate days in different

tools, such that no set was traced on consecutive days. In most cases, there were multiple

days between sessions, due to users’ work schedules. For the first case study, scores are

reported with respect to the reference traces, whereas for the second case study, scores

are computed by comparing them with traces performed by domain experts. Extensive

qualitative feedback was also collected from the users during the study, both informally

and through a questionnaire completed at the end of every tracing session.

137

The pilot study involved with seven users, including two senior neuroanatomists (users

4 and 6), two expert undergraduate students with 2-3 years of experience reconstructing

neurons with NeuroLucida in the Angelucci lab (users 5 and 7), and three undergraduate

students with no background in neuroanatomy (users 1-3). In a typical lab, the bulk

of tracing work is performed by trained undergraduates (e.g., users 5 and 7), who start

with little background (e.g., users 1-3) and are trained by senior members of the lab (e.g.,

users 4 and 6). Evaluating VRNT with a cross-section of the experience levels found in a

typical lab can help determine how well the tool fits into existing workflows. Specifically,

the tool must be usable by senior members and expert students for tracing, and be easy

to learn for new hires such as users 1-3. Based on the range of experience with tracing

in NeuroLucida, the users are binned into two groups, an experts group, consisting of

the neuroanatomists and the expert undergraduates, and a novices group, with the three

inexperienced undergraduates. During the evaluation, the VR tool ran on a workstation

with a dual socket Intel Xeon E5-2680 CPU, 64 GB RAM, an NVIDIA GTX 1080 GPU, and

an SSD.

4.2.3.1 Planar Axons Reference Data Set

Although all tracings can contain some subjectivity, it is important to establish a baseline

of performance with respect to a given reference. The first data set is the Neocortical Layer 1

Axons data set [211] from the DIADEM challenge [92] and the corresponding reference traces.

The data set consists of six volumes of neurons in a mouse brain that can be stitched to form

a 1464× 1033× 76 volume with the provided alignment information. The resolutions of

the data are ≈ 0.08µm/pixel in X and Y and 1µm/pixel along Z.

The data set includes 34 reference tracings, of which the first two were used for training

and the rest for evaluation. For each neuron, users started from the first point of the

reference tracing and traced the corresponding neuron to its perceived termination points.

Once all sessions had been completed, the traces made in each tool were compared with the

provided reference tracings. In general, the experts rated the reference tracings as acceptable

reconstructions, with the exception of a few neurons where branchings were judged to be

crossings, or a crossed gap was considered too wide. Table 4.1 shows, for each user, the

mean score, reconstruction time, and speed-up across all 32 evalution traces. Speed-up is

138

Table 4.1: Average scores (with standard deviation) and times in seconds for each tool
across the 32 DIADEM traces used for evaluation. The average speed-up over all traces is
also shown for each user. Users 1-3 are novices and 4-7 are experts. Both novices and experts
performed similarly in VR, and tended to be faster on average. ∗User 1 miscalibrated the
Z level in their NeuroLucida sessions, resulting in much lower scores for the majority of
traces.

User
NeuroLucida VR

Speedup
Score Time Score Time

1∗ 0.27 ± 0.35 324 0.49 ± 0.35 172 1.9
2 0.34 ± 0.34 188 0.54 ± 0.37 161 1.2
3 0.48 ± 0.38 277 0.45 ± 0.36 149 1.9

4 0.57 ± 0.38 412 0.57 ± 0.36 271 1.5
5 0.56 ± 0.37 237 0.41 ± 0.38 151 1.6
6 0.65 ± 0.35 464 0.50 ± 0.40 229 2.0
7 0.51 ± 0.38 262 0.47 ± 0.41 302 0.9

≤ -0.7

Score Difference (VR - NeuroLucida)

0

10

20

30

40

50

Tr
ac

in
g

s

(-0.7, -0.5] (-0.5, -0.3] (-0.3, -0.1] (-0.1, 0.1] (0.1, 0.3] (0.3, 0.5] (0.5, 0.7] >0.7

Fig. 4.22: Differences between scores of expert traces in VR vs. NeuroLucida. The difference
in the score achieved in VR and NeuroLucida compared to the reference is shown for each
trace. Overall, experts performed within the acceptable error range (±0.1, dark blue) and
sometimes better in VR (light blue) when compared to their work in NeuroLucida.

defined as the average time per tracing in NeuroLucida divided by the average time per

tracing in VR.

When comparing the scores for traces done by the experts in NeuroLucida vs. those

done in VRNT (Fig. 4.22), the majority of traces performed were acceptably equivalent in

both tools (dark blue bar, Fig. 4.22), with some neurons traced better in each tool (green and

light blue bars, Fig. 4.22). Overall, there was no statistically significant difference between

the scores achieved in VR vs. NeuroLucida (Mann-Whitney U = 6426.5, n1 = 122, n2 = 120,

p = 0.097). The distributions of scores for expects and novices are shown in Figs. 4.23

139

≤0.2 >0.8
Score

0
5

10
15

20
25
30
35

40
45

T
ra
ci
n
g
s

(0.2, 0.4] (0.4, 0.6] (0.6, 0.8]

(a) NeuroLucida

≤0.2 >0.8
Score

0
5

10
15

20
25
30
35

40
45

T
ra
ci
n
g
s

(0.2, 0.4] (0.4, 0.6] (0.6, 0.8]

(b) VR

Fig. 4.23: Distribution of scores (higher is better) for experts. In (a) median score: 0.7, mean
score: 0.57± 0.38. In (b) median score: 0.6, mean score 0.49± 0.39. A score of ≥ 0.8 is a
tracing acceptably similar to the reference.

and 4.24, respectively.

The distributions of scores for experts (Fig. 4.23) indicate that experts can achieve

similar, and sometimes better, tracing quality in VRNT when compared to their current

workflow. In cases where experts produced equivalent quality traces in both tools, there

is a statistically significant speed-up, with experts being on average 1.7× faster tracing

in VRNT (Mann-Whitney U = 1004.5, n1 = 54, n2 = 54, p = 0.005). Moreover, expert

users were similarly consistent in VR and NeuroLucida, as indicated by the mean of

standard deviations on each trace, 0.23 and 0.24, respectively. In fewer cases (37%, green

bars in Fig. 4.22), the experts performed better in NeuroLucida than in VRNT, beyond the

acceptable error bounds. When investigating these cases, it was found that they involved

the same neuron for all experts, with each expert making the same mistake. One such

neuron is the eighth neuron from the data set, where a stitching issue was misinterpreted as

two neurons passing each other in VR (Fig. 4.25). The VR tool performed better in other

cases (19%, light blue bars Fig. 4.22) where neurons traveled along the Z axis down through

image slices, as this is much harder to follow in NeuroLucida, requiring scrolling through

the image stack (Figs. 4.26 and 4.27).

Novice users performed similarly, with 72% of their traces falling within acceptable error

or being better than those performed in NeuroLucida (Fig. 4.24). On average, novices were

2.1× faster in VR for traces that they achieved similar scores in both tools. More significant

results for the novices are not reported due to the limited data collected. User 1’s results

were discarded from the summary statistics entirely, as the user made a mistake in their

NeuroLucida sessions and miscalibrated the Z level of the traces.

140

≤0.2 >0.8
Score

0

5

10

15

20

25

T
ra
ci
n
g
s

(0.2, 0.4] (0.4, 0.6] (0.6, 0.8]

(a) NeuroLucida

≤0.2 >0.8
Score

0

5

15

20

25

T
ra
ci
n
g
s

(0.2, 0.4] (0.4, 0.6] (0.6, 0.8]

(b) VR

Fig. 4.24: Distribution of scores (higher is better) for novices, excluding user 1. In (a) median
score: 0.5, mean score: 0.42± 0.37. In (b) median score: 0.49, mean score 0.5± 0.37. A score
of ≥ 0.8 is a tracing acceptably similar to the reference.

4.2.3.2 Cell Bodies Data Set

To evaluate the usability of VRNT on a data set with neuronal structures that were more

familiar to the experts, the second case study used a data set acquired by the Angelucci

lab. The data set, shown in Fig. 4.15, consists of neurons in the visual cortex of a marmoset

monkey labeled with green fluorescent protein, and was acquired in 2012 using a 2-photon

microscope. The volume is 1024× 1024× 314 with a resolution of 0.331µm/pixel in X and

Y and 1.5µm/pixel in Z. The neuronal structures in this data set branch significantly more

often than those in the data set described in Section 4.2.3.1. Moreover, this data set has a

higher level of noise and frequency of ambiguous cases, and is therefore more challenging

to trace. This evaluation is mainly concerned with scaling in the sense of the cognitive load

of the user, not necessarily data size. Five starting points were selected in the data set, to

be traced by the experts in VR. Furthermore, as there is no reference available, scores were

computed by relecting user 6’s tracings as the reference (Table 4.2).

Since this data set is more complex, one aspect of interest is whether users would use the

Table 4.2: Average scores (with standard deviation) and times for traces on the Cell Bodies
data set. User 6 is used as the reference.

User VR Score Time (s)

1 0.54 ± 0.23 537
2 0.58 ± 0.17 252
3 0.70 ± 0.23 207

5 0.66 ± 0.19 360
6 – 469
7 0.59 ± 0.34 542

141

(a) (b) (c)

Fig. 4.25: A stitching issue clearly visible in NeuroLucida (a-b), but difficult to perceive
with volume rendering or isosurfacing (c). What appears as two neurons (c) is in fact a
single neuron, slightly misaligned due to stitching issues at the border of two acquisitions.
When scrolling through the image slices in NeuroLucida, the stitching issue can be seen by
flipping between the slices (a-b) and those above and below. In NeuroLucida, all experts
traced the neuron correctly, whereas in VR only one expert traced it correctly. Note that this
issue is not specific to VR, but to the volume visualization method chosen.

Fig. 4.26: A neuron branching along the Z plane is not visible on the image plane used to
trace the main structure (left). The branch can be seen only after scrolling down the stack
(right). Only two experts traced this branch correctly in NeuroLucida, but in VR all users
traced it correctly.

142

Fig. 4.27: From left to right: a neuron travels vertically through consecutive slices, appearing
as a dot (middle) in these images. In NeuroLucida, only two experts traced this correctly,
but in VR all users except one expert traced it correctly.

tool differently with respect to the more planar data set in Section 4.2.3.1. For example, if

the ratio of time spent tracing vs. navigation change significantly compared to the previous

data set. On average, users spent 15% of their time tracing and 48% panning, which is only

slightly different from the 21% and 58%, respectively, in the Neocortical Layer 1 Axons data set.

Users toggled between the volume and isosurface rendering modes more frequently in this

data set. Although this result is interesting, it requires further evaluation on multiple data

sets and a more rigorous measure of data complexity to provide meaningful evaluation.

During a review of several of user 6’s sessions, it was noted that he would change

viewpoints frequently to check potential branchings and to obtain a better understanding

of the data. Such frequent viewpoint manipulation in NeuroLucida would require moving

back and forth through hundreds of images. During these sessions several experts remarked

that they would prefer to trace this data in VRNT, as scrolling through image stacks in

NeuroLucida becomes more difficult as the data set thickness increases.

4.2.4 Discussion

The design study consisted of open-ended feedback sessions with neuroanatomists and

quality evaluation of the tracings produced by using VRNT compared to state-of-the-art

desktop software, NeuroLucida. Additional feedback was collected during the evaluation

through a survey filled out at the end of each tracing session, and by soliciting feedback with

regard to the usability and comfort of each tool. This section describes the users’ qualitative

responses to VRNT regarding neuron tracing, navigation, and rendering. Moreover, this

143

section discusses the overall strengths and limitations of the current tool.

4.2.4.1 Tracing

The experts reported that tracing neurons, creating branch points, and correcting

mistakes were more intuitive in the VR tool than in NeuroLucida. The combination of

tracing in free space with a single button press and the flexible graph editing system allowed

users to focus on the data, instead of having to continuously flip back to a toolbar to mark

branches and termination points, or frequently scroll through the image stack. Similar

responses were recorded in the survey, with users rating the VR tool easier to use for these

tasks. However, experts expressed the need for fine manipulation of lines and nodes to edit

previous tracings, without going through a delete and re-trace interaction. When analyzing

user sessions, it was observed that users employed the quick undo command more often

than explicitly deleting lines or nodes; indicating that the delete and re-trace feature may be

less intuitive, or that it may be more applicable to post-trace editing sessions. Designing

an intuitive system for editing previous tracings in VR poses an interesting challenge.

Introducing additional button commands or menus could make the system nonintuitive,

and manually switching between tracing and editing modes could break the “flow” of a

user during the task.

When replaying the tracing sessions, some errors in traces produced in VRNT were

observed to be a result of the user forgetting to return to a branch point. In NeuroLucida,

branches and termination points are explicitly marked; when a branch is ended at a

termination point, the system scrolls the user back to the branch point to trace the rest of

the branches. With VRNT’s graph-based editing system, creating branches and termination

points is implicit, and the user must remember to return to the branch point after completing

the current branch. In the VR sessions, some users placed markers at complex crossings or

branch points, as reminders to revisit the location later. Users also requested the ability to

hide the data set entirely, allowing them to observe the traced tree structure independently.

Although this could be achieved in VRNT by panning the focus region outside the volume

to observe the tree from a distance, or viewing the minimap, providing an explicit option

would be desirable.

144

4.2.4.2 Navigation

The users easily adapted to navigating by grabbing the focus region and moving it.

During the tracing sessions, some users chose to sit, and the panning system allowed them

to easily bring the data closer. One user commented that he felt as productive sitting as he

did standing. The current version of our tool does not support rotating the volume, due to

the inherent ability in VR to simply walk around the data set instead. However, this feature

would be useful when tracing while seated. Instead, when seated, users moved the volume

behind them and spun the chair around to view the data from the opposite side. In one

case, an expert did not perform this less intuitive action, and misinterpreted a crossing as

a branch point. When asked to re-trace this neuron while standing, the expert correctly

resolved the crossing by observing it from a different angle.

Users found the minimap to be somewhat useful, especially for displaying the tracings;

however, users reported rarely looking at it during active tracing, as it is small and tucked

away in a corner. Users did report finding it useful for navigating to the starting point and

reviewing the trace. The minimap may be more useful for data sets larger than the ones

evaluated, where orienting oneself becomes more challenging. Additionally, in some cases

users misinterpreted a neuron as terminating, when it was in fact just at the focus region

boundary. Based on this feedback, VRNT was modified to also display the volume bounds

in the world space to clearly convey the data set bounds.

4.2.4.3 Rendering

Neuroanatomists are often not familiar with typical scientific visualization representa-

tions such as volume rendering and isosurfaces. For example, when viewing the volume

representation, users often misinterpreted stitching artifacts between acquisitions (Fig. 4.25).

After a second VR session, one of the experts mentioned preferring the volume representa-

tion after gaining more understanding of what is shown. In his first session, he primarily

used isosurfaces, but found them to be potentially deceiving, as neurons may manifest at

some isovalues but not at others, and can appear to change thickness as the isovalue is

adjusted.

Users also raised concerns that the volume and isosurface representations could hide or

filter out faint or fine-detail features in the data, such as spines or boutons (small important

145

structures present on dendrites and axons, respectively). Expert users also suggested

introducing the option of viewing the original microscope image slices within the volume

data, in order to supplement the new representation with something more familiar to the

neuroanatomist. It would also be valuable to add support for clipping planes to cull out

noisy or dense regions of the data. During the evaluation sessions, users employed the

focus region bounds as a form of clipping plane, by panning the data in and out of view,

indicating a need for this feature.

When reviewing traces in the reference data sets where users performed poorly in VR, it

was found that some of these cases involved crossing a gap in the data where the labeling

of the neuron was faint or incomplete. In NeuroLucida, users correctly perceived this gap

as caused by nonuniformity in the signal. However, no scale bar is displayed in VRNT

tool, which could lead users to misinterpret the size of gaps or structures they are seeing in

physical units.

Novice users found the immersive 3D representation provided in VR helpful in under-

standing the 3D nature of the neuronal structures. One novice mentioned that after using

the VR tool, she was better able to construct the 3D structure mentally when working on 2D

image slices in NeuroLucida.

4.3 Interactive Visualization of Terascale Data
in the Browser

This section discusses work on an initial evaluation as to how new web technologies,

WebAssembly and WebGPU, can be leveraged to enable scientific visualization applications

directly in the browser. WebAssembly [299] and WebGPU [300] are new web technologies

that can help address the issues faced when bringing scientific visualization applications

to the browser. WebAssembly is a bytecode format to which native code can be compiled

(e.g., through Emscripten [322]) that can be executed at near-native speeds in the browser

(Section 4.3.1). WebGPU is a new low-level graphics API for the browser, similar in spirit to

DirectX 12, Vulkan, and Metal, that exposes advanced rendering and compute functionalities

(Section 4.3.2). The new capabilities provided by these technologies can be used to develop

powerful scientific visualization applications.

The capabilities of these technologies are assessed through a series of small visualization

application examples (Section 4.3.3). First, the performance of WebAssembly builds of

146

1TB Original200MB Compressed

Fig. 4.28: Interactive visualization of an isosurface of a ~1TB data set entirely in the
web browser. The full volume is a float64 10240×7680×1536 grid computed by a DNS
simulation [166, 167]. The isosurface is interactively computed and visualized entirely in
the browser using the BCMC GPU isosurface extraction algorithm for block-compressed
data, after applying advanced precision and resolution trade-offs [119,120,171]. The surface
consists of 137.5M triangles and is computed in 526ms on an RTX 2070 using WebGPU in
Chrome and rendered at 30FPS at 1280×720. The original surface, shown in the right split
image, consists of 4.3B triangles and was computed with VTK’s Flying Edges filter [250] on
a quad-socket Xeon server in 78s using 1.3TB of memory.

widely used native libraries for importing images and LIDAR data are compared to their

native versions. Marching cubes [179] is used as a proxy for common floating point

and memory intensive scientific visualization algorithms, both in WebAssembly and in

parallel in WebGPU. Finally, a new GPU-driven parallel isosurface extraction algorithm,

BCMC, is presented for interactive isosurfacing of block-compressed volume data sets in

memory-constrained client devices to enable large-scale data visualization in the browser

(Fig. 4.28). The isosurface extraction algorithm makes use of GPU decompression and a

GPU-managed LRU cache to achieve interactive isosurface extraction with a small memory

footprint.

4.3.1 WebAssembly

When considering bringing an existing scientific visualization application to the web,

or deploying an entirely new one, a major concern is the lack of libraries widely used in

native applications, e.g., for loading different data formats or performing computation.

Previously, developers may have chosen to port the required libraries to JavaScript (e.g.,

VTK.js [146]), or recompile them to JavaScript using Emscripten [322]. Porting a substantial

set of dependencies to JavaScript is clearly a major undertaking, and although Emscripten

can compile C and C++ code to JavaScript, the performance of JavaScript is typically

insufficient for computationally intensive tasks. Today, the above issues can be addressed

147

by using Emscripten, or toolchains for other languages, to compile the required libraries to

WebAssembly.

WebAssembly (Wasm) [299] is a standardized bytecode format for a virtual machine

that can be run in the browser or natively. In contrast to Java Applets or Flash, WebAssem-

bly is integrated natively into the browser, supporting tight integration with JavaScript

and security through sandboxing, and is targetable by C and C++ through Emscripten.

WebAssembly is shipping today in the major browsers, Chrome, Firefox, Safari, and Edge,

ensuring wide availability on user systems. In a study of various compute benchmarks,

Jangda et al. [135] found WebAssembly to be 1.5–3.4× slower than native code, depending

on the task. These slowdowns can be partly attributed to enforcing WebAssembly’s security

guarantees, which require some additional checks to be performed.

4.3.1.1 Compiling Native Libraries to WebAssembly

The Emscripten compiler can be used as a drop in replacement C or C++ compiler and

can compile most portable code to WebAssembly. The main challenge when compiling a

library to WebAssembly is the number of dependencies required by the library, as each

one must also be compiled to WebAssembly. Large libraries such as VTK [249], whose

dependencies may themselves have a number of dependencies, can produce a large graph

of libraries that must all be compiled to WebAssembly to link against.

To provide a convenient API for calling into C++ libraries from JavaScript and work-

ing with C++ objects, library authors can use the binding generation tools provided by

Emscripten: WebIDL Binder (similar to SWIG) or Embind (similar to Boost.Python). For

smaller libraries or minimal bindings, it is also possible to export a C API and call it directly

from JavaScript.

Two example scientific visualization applications run in the browser using libraries

compiled to WebAssembly are used to evaluate WebAssembly’s performance. The neuron

visualization example (Section 4.3.3.1) uses the C libtiff library to load TIFF image stacks, and

the LIDAR visualization example, which uses the C++ LASlib [162] library to load las and

laz LIDAR data files. The libtiff library depends on zlib and libjpeg to compile libtiff to Wasm

these dependencies had to be compiled to Wasm first, and then linked with libtiff to produce

the final Wasm library. A minimal C API wrapper was written for the LASlib WebAssembly

148

library (Listing 6), which is used to discuss the lower level details of calling between

JavaScript and C or C++ Wasm modules. The libtiff (github.com/Twinklebear/tiff.js) and

LASlib (github.com/Twinklebear/LAStools.js) WebAssembly modules are available on

Github.

4.3.1.2 Sharing Memory Between JavaScript and
WebAssembly

The heap space of a WebAssembly module is stored within a JavaScript ArrayBuffer

object that can be grown to meet dynamic allocation needs of the module (i.e., malloc and

new). Pointers in the module are simply offsets into this ArrayBuffer. Thus, the module can

directly share memory with the JavaScript host code by returning a pointer that can be used

struct LASFile {

LASreader *reader;

std::vector<float> positions;

LASFile(const char *fname); // Reads file using LAStools

};

extern "C" LASFile* openLAS(const char *fname) {

return new LASFile(fname);

}

extern "C" float* getPositions(LASFile *file){

return file->positions.data();

}

extern "C" uint64_t getNumPoints(LASFile *file) {

return file->positions.size() / 3;

}

// Setup call information for the exported C functions

var openLAS = Module.cwrap("openLAS", "number", ["string"]);

var getPositions =

Module.cwrap("getPositions", "number", ["number"]);

var getNumPoints =

Module.cwrap("getNumPoints", "number", ["number"]);

// Write file data into Emscripten's virtual filesystem

FS.writeFile("data.laz", new Uint8Array(fileData));

var lasFile = openLAS("data.laz");

// Create a view of the Wasm module's point data

var positions = new Float32Array(HEAPF32.buffer,

getPositions(lasFile), getNumPoints(lasFile) * 3);

Listing 6: A subset of the C API (top) provided by the example LASlib WebAssembly
module and its use from JavaScript (bottom). The C API manages loading the data using
LASlib and stores it in memory that can be shared with JavaScript. JS creates a view of the
module’s memory starting at the “pointer” returned by the API to access the data.

149

to create a view of the module’s heap starting at the returned index. This approach is used

to share the point cloud data loaded by the LASlib WebAssembly module with JavaScript

without copying (Listing 6).

However, it is not possible for WebAssembly modules to directly see JavaScript memory.

To pass an array of data from JavaScript to a module, space must be allocated from the

module’s heap to copy the array into. The index to which the array was written in the heap

is then passed to the module as a pointer. To minimize the number of such copies that must

be made to pass arrays to the module, it is best to have the module store large arrays in its

heap and have JavaScript create an array view of the heap.

4.3.2 WebGPU

WebGPU [300] is a modern graphics API for the web, in development by the major

browser vendors and available for testing in the preview builds of Chrome, Firefox, and

Safari. WebGPU fills a role similar to Vulkan, DirectX 12, and Metal, providing a low-

level API with more explicit control to the user and fixed inputs to the driver, allowing

for improved performance compared to WebGL. Moreover, WebGPU exposes additional

GPU functionality that is key to implementing general parallel compute algorithms and

processing large data, providing support for compute shaders, storage buffers, and storage

textures.

The concepts used in WebGPU should be familiar to users of Vulkan, DirectX 12, and

Metal, although WebGPU is not as “low level” as the native APIs, striking a good balance

between usability and performance. In WebGPU, rendering or compute passes are recorded

using a command encoder to buffer up and submit work to the GPU. When recording a

pass, a rendering or compute pipeline can be bound. The pipeline specifies the shaders to

run, the layout of buffer inputs to the shaders, and, for rendering pipelines, the layout of

vertex attributes and output render targets. Groups of buffers and textures matching the

specified layouts can be bound to pass data to the shaders. The fixed layout of the pipeline

allows the GPU to optimize its execution, while still allowing the data being processed to

be changed as needed. This fixed layout is in contrast to WebGL and OpenGL, where the

entire rendering or compute state cannot be provided to the driver in advance, limiting the

optimizations that can be performed.

150

4.3.3 Example Applications and Performance Evaluation
vs. Native Execution

This section evaluates a set of example applications for common visualization tasks

that make use of WebAssembly and WebGPU. The applications cover a range of com-

mon operations performed in visualization: loading TIFF image stacks of microscopy

volumes (Section 4.3.3.1), interactive visualization of LIDAR data (Section 4.3.3.2), naive

serial and data-parallel isosurface extraction (Section 4.3.3.3), and volume decompression

(Section 4.3.3.4). A performance comparison against native code on the same task is

conducted for example, to assess the capabilities of WebAssembly and WebGPU for scientific

visualization applications.

4.3.3.1 Neuron Visualization

The first example is a web application for visualization of connectomics data (Fig. 4.29).

The application uses libtiff compiled to WebAssembly to import TIFF stacks that are volume

rendered using WebGL2. TIFF files are loaded by writing the file data into Emscripten’s

virtual in memory filesystem, after which the file name can be passed to TIFFOpen and

read through Emscripten’s implementation of the POSIX file API. The application can also

import SWC files to display neuron reconstructions with the volume data. This tool was

written to facilitate collaboration on another project, allowing visualization researchers to

Fig. 4.29: Images of the neuron visualization application, used by neuronatomists to judge
the quality of neuron reconstructions (rendered as lines) in the browser.

151

Table 4.3: Load times for the connectomics data sets using the native build of libtiff and the
WebAssembly module in Firefox and Chrome.

Data Set Native Firefox 78 Chrome 83

Layer 1 Axons (44MB, 76 files) 0.87s 1.8s 2.6s
Cell Bodies (263Mb, 314 files) 4.1s 8.6s 16s

easily collect feedback from neuroanatomists on reconstruction quality. The neuroanatomist

is able to simply open the web page, upload the data and traces, and interactively compare

multiple reconstructions. WebGL2 was used for the rendering component of this tool to

ease deployment, as WebGPU is not yet available outside preview browser builds.

Table 4.3 compares the time to load two connectomics data sets using the WebAssembly

build of libtiff and the native version. The benchmarks are run on a Surface Pro 7 laptop

with an i5-1035G4 CPU and 8GB of RAM. The performance difference observed between

WebAssembly and native code is similar to those reported by Jangda et al. [135], with

WebAssembly being about 2-4× slower than native code. The browser’s implementation of

the WebAssembly engine is an important factor, with Firefox outperforming Chrome by 2×.

4.3.3.2 LIDAR Visualization

The second application example is LIDAR visualization, a common task in geospatial

applications. To enable loading LIDAR data directly in the browser, the widely used library

LAStools [162] is compiled to WebAssembly. LAStools has no external dependencies,

making it easy to compile to Wasm; however, it is a C++ library and thus requires a C API

to be written or generated to be called from JavaScript. A minimal C API was added on top

of LAStools, which supports loading files and retrieving the contained points and colors

to provide an illustrative example of the process (see Listing 6). Laz files provided by the

user are written into Emscripten’s virtual filesystem to allow the library to open them. The

loaded points are then rendered as billboarded quads using WebGPU (Fig. 4.30) to display

varying size round or square points.

Table 4.4 compares the time to load various LIDAR data files using the native and

WebAssembly versions of LAStools. The LIDAR files are provided in the compressed laz

format, and contain 9M to 40M points. The benchmarks are run in Chrome Canary and

Firefox Nightly, as they are required for WebGPU support. The benchmarks are performed

152

on a Surface Pro 7. As before, Firefox’s WebAssembly engine is found to be 2-3× slower

than native code, with Chrome’s engine an additional 2-3.5× slower than Firefox. Although

performance trails native code overall, the loading times achieved for the data sets are likely

acceptable in an application.

Fig. 4.30 reports the rendering performance achieved by the WebGPU LIDAR renderer

on the smallest and largest data sets tested, on both a Surface Pro 7 and a desktop with an

RTX 2070 GPU. The basic renderer implemented in this example, which does not employ

level of detail or filtering to accelerate rendering, is able to provide interactive rendering of

the largest data set, even on the integrated GPU of the Surface Pro 7.

4.3.3.3 Marching Cubes

While the prior examples have focused on I/O and memory intensive tasks, namely,

loading compressed and complex data formats, another key concern is the performance

of compute intensive tasks. The classic marching cubes [179] algorithm is used as a

representative proxy for the compute demands of common visualization tasks performed

(a) Utah 9M, points (b) Morro Bay, 40M points

Fig. 4.30: Images from the WebGPU LIDAR renderer. At 1280×720 the images render at (a)
100 FPS and (b) 35FPS on an RTX 2070, and (a) 14FPS and (b) 3.5FPS on a Surface Pro 7.

Table 4.4: Load times for the laz files using the native build of LASlib and the WebAssembly
module in Firefox and Chrome.

Data Set Native Firefox 80 Chrome 86

Utah 9M 3.8s 9.2s 29s
Morro Bay 20M 7.8s 20s 68s
Utah 30M 13s 30s 100s
Morro Bay 40M 16s 41s 133s

153

in scientific visualization applications. Serial implementations of marching cubes are

evaluated in C++, JavaScript, and WebAssembly, and data-parallel variants evaluated in

Vulkan and WebGPU. The data-parallel variants are similar to standard approaches using

CUDA [61, 67]. First, a compute shader run over all voxels marks those containing the

surface. Next, the active voxel IDs are compacted using a GPU prefix sum and stream

compaction. For each active voxel, a compute shader determines the number of output

vertices and writes the result to a global buffer. The offsets for each voxel and total number

of vertices are computed using a GPU prefix sum. A second pass over the active voxels

computes and outputs the vertices to produce a triangle soup.

The serial implementations are benchmarked on the Surface Pro 7 on four small data

sets, ranging in size from 643 to 2563, and are run in Chrome Canary and Firefox Nightly

(Figure 4.31). Each benchmark computes 100 random isovalues using each variant and

reports the average time to compute the surface. The 100 random isovalues are sampled over

a range covering surfaces typically of interest to users, excluding noise and values so high

0

5

10

15

T
im
e
(m
s)

N
ative

W
asm

FF
N
ightly

W
asm

Chrom
e
86

JavaScript

Firefox
80

JavaScript

Chrom
e
86

(a) Fuel (643)

0

20

40

60

80

100

120

N
ative

W
asm

FF
N
ightly

W
asm

Chrom
e
86

JavaScript

Firefox
80

JavaScript

Chrom
e
86

T
im
e
(m
s)

(b) Hydrogen Atom (1283)

0

200

400

600

800

1000

1200

T
im
e
(m
s)

N
ative

W
asm

FF
N
ightly

W
asm

Chrom
e
86

JavaScript

Firefox
80

JavaScript

Chrom
e
86

(c) Bonsai (2563)

0

200

400

600

800

1000

1200

T
im
e
(m
s)

N
ative

W
asm

FF
N
ightly

W
asm

Chrom
e
86

JavaScript

Firefox
80

JavaScript

Chrom
e
86

(d) Skull (2563)

Fig. 4.31: Performance of our serial C++, JavaScript, and WebAssembly versions of marching
cubes on 100 random isovalues.

154

Table 4.5: Performance of the naive data-parallel marching cubes implementation on 100
random isovalues. WebGPU performance is typically on par with native Vulkan code. ∗
failed on the Surface Pro 7.

(a) Surface Pro 7

Data Set Vulkan WebGPU

Fuel 643 25ms 26ms
Hydr. 1283 58ms 86ms
Bonsai 2563 228ms 261ms
Skull 2563 279ms 282ms
Plasma 5123 1357ms ∗

(b) RTX 2070

Data Set Vulkan WebGPU

Fuel 643 2ms 18ms
Hydr. 1283 8ms 18ms
Bonsai 2563 49ms 49ms
Skull 2563 70ms 50ms
Plasma 5123 322ms 329ms

as to produce few output triangles. The results of the benchmarks are shown in Fig. 4.31.

The WebAssembly version performs well in Firefox, on average performing only 1.5×

slower than native code. Firefox’s JavaScript engine is on average 4.4× slower than native

code, with the performance gap between JavaScript and WebAssembly increasing with data

set size. Chrome’s WebAssembly performance is on par with its JavaScript performance,

averaging 3.2× and 3.6× slower than native code, respectively.

The data-parallel variants are benchmarked on the Surface Pro 7 and a desktop with

an RTX 2070 (Table 4.5), and test on an additional 5123 data set. The first computation is

discarded in each benchmark, as WebGPU was found to have a high first launch overhead.

On the Surface Pro 7, there is a moderate improvement over the fastest serial implementation

in the browser on larger data sets, although both the Vulkan and WebGPU variants achieve

performance just on par with the serial native C++ version. When compared to the fastest

WebAssembly version, the Bonsai and Skull see performance improvements of ∼1.3×.

However, significant performance improvements over the serial implementations are

observed on the RTX 2070, where the data-parallel variants achieve a 7× improvement on

the 2563 data sets over WebAssembly in Firefox, and a 5× improvement over the serial

native implementation.

The most exciting takeaway from this evaluation is that the performance of WebGPU is

typically on par with native Vulkan code, indicating that little performance is lost when

moving GPU compute kernels to the browser. On smaller data sets, WebGPU is found to

be slower, where overhead in the WebGPU mapping to the underlying native graphics

API may impact performance. This overhead is hidden on larger data sets, where the

155

computation dominates the total execution time.

4.3.3.4 ZFP Decompression

When visualizing large-scale data on a remote client (e.g., the 1TB volume shown

in Fig. 4.28), transferring the entire data set to the client can be impractical or impossible.

To reduce bandwidth and memory requirements, a compressed version of the data can

be transferred instead, that the client can decompress as needed. ZFP [171] provides fast

and high-quality compression of floating point scientific data, and is especially suited to

large volumetric data. ZFP compresses volumetric data in 43 blocks, using fixed or variable

bitrate compression. ZFP’s fixed rate compression mode can be quickly compressed and

decompressed in parallel on the GPU, and a CUDA implementation is provided with the

library. This example evaluates the performance of parallel decompression in the browser,

by porting ZFP’s CUDA decompressor to WebGPU and Vulkan.

The decompression benchmarks are run on both the WebGPU and Vulkan ports of

the CUDA decompressor on three data sets, using the Surface Pro 7 and an RTX 2070

(Table 4.6). Each data set is compressed at three different bitrates: two, four, and eight.

The benchmark decompresses each compressed version 10 times and reports the average

decompression performance achieved. The native comparisons on the CPU and in CUDA

use ZFP prerelease version 0.5.5-rc1 built from Github. As CUDA is not available on the

Surface Pro 7, and parallel decompression with OpenMP is not supported in ZFP, ZFP’s

Table 4.6: ZFP decompression performance of the WebGPU implementation compared to
a native Vulkan version and ZFP’s original CUDA and serial decompressor. Neither the
Vulkan nor WebGPU implementation is on par with the original CUDA implementation,
though both are still capable of fast parallel decompression.

(a) Surface Pro 7

Data Set CPU (Serial) Vulkan WebGPU

Skull 2563 329MB/s 756MB/s 697MB/s
Plasma 5123 349MB/s 898MB/s 777MB/s

(b) RTX 2070

Data Set CUDA Vulkan WebGPU

Skull 2563 67.1GB/s 14.8GB/s 7.6GB/s
Plasma 5123 67.8GB/s 19.4GB/s 11.8GB/s
Miranda 10243 113GB/s 19.6GB/s 13.7GB/s

156

serial decompressor is used as the native comparison point on the Surface Pro 7. The

decompressed output of the largest data set, Miranda (4GB), does not fit in the Surface Pro

7’s 3.8GB VRAM, and thus the Surface Pro 7 is used to evaluate only the smaller data sets.

Although the Vulkan and WebGPU versions achieve slightly over 2× faster decompres-

sion on the Surface Pro 7 compared to the serial CPU decompressor, both are slower than the

CUDA decompressor, by up to 8× and 6× on the Miranda. The WebGPU implementation

is also found to trail the Vulkan version slightly, as observed previously on the data-parallel

marching cubes example. Although the Vulkan and WebGPU implementations have room

for improvement compared to ZFP’s CUDA decompressor, the performance improvements

provided over serial decompression are substantial.

4.3.4 Parallel Isosurface Extraction from Block-Compressed
Data Using WebGPU

Based on the performance results observed on the example applications, it is clear that

the browser can provide a capable environment for scientific visualization tasks. However,

working with large data sets in the browser using WebGPU is challenging due to limitations

on network transfer bandwidth and GPU memory, requiring a combination of adaptive

precision and resolution compression (e.g., [119, 120, 171]).

The following observations motivated the design of the BCMC algorithm to enable

interactive isosurface computation on large-scale data in the browser. First, the isosurfaces

of interest to users typically occupy a sparse subset of the volume, which likely does fit

in memory. Users are also likely to explore nearby isosurfaces, touching the same regions

of the volume repeatedly. Third, ZFP’s fixed-rate compression mode allows specific 43

blocks to be decompressed, without decompressing the entire data set. Finally, WebGPU

performance is on par with native, and thus pushing as much computation as possible to

the GPU will be beneficial for processing large data sets.

An illustration of the processing pipeline of the BCMC algorithm is shown in (Figs. 4.32

to 4.34), the code is also available on GitHub1). BCMC begins by uploading the ZFP

fixed-rate compressed data to the GPU, allowing it to decompress blocks as needed without

additional interaction with the CPU. To compute the isosurface, BCMC first finds the blocks

1https://github.com/Twinklebear/webgpu-bcmc

157

(a) Input Isovalue

(b) Select

Active Blocks

1 1 1 1 1 1 0 10

0 1 2

3 4 5

8

M
active

I
slot

0 1 2 3 4 5 -1 -1-1

S
block

0 1 2 3 4 5 -1

Previous Surface

Previous Cache State

S
age

0 0 0 0 0 0 2

M
avail

0 0 0 0 0 0 1

=

=

=

=

Cache 10 2 3 4 5
=

Fig. 4.32: Starting from an existing cache used to compute a previous surface (or an empty
one), (a) the surface at some new desired isovalue must be computed. (b) BCMC first finds
the blocks that contain the isovalue or are needed to provide neighbor data for blocks
containing it.

containing the data required to compute it (Section 4.3.4.1). BCMC then determines which

of these blocks are in the cache or must be added to it (Section 4.3.4.2). Each new block

is assigned a slot in the cache and decompressed into it (Section 4.3.4.2.1). Active blocks

are processed by loading them and the required neighbor voxels into shared memory

(Section 4.3.4.3). For each active block, BCMC computes the number of vertices output by

its voxels (Section 4.3.4.4). Finally, for each block that will output vertices, BCMC computes

the vertices to output a triangle soup (Section 4.3.4.5).

4.3.4.1 Selecting Active Blocks

As done by Liu et al. [172], BCMC precomputes and stores the value range of each

block when loading the data. To find active blocks, a compute shader is run over the blocks

that marks a block as active if its range contains the isovalue (Fig. 4.32b). However, in

158

Update Cache

(b) Mark New Blocks

(c) Prefix Sum M
avail

, M
new

 Stream Compact IDs

 & Ages

S
age

M
avail

I
slot

S
block

(a) Increment Slot Age

S
age

1 1 1 1 1 1 3

S
age

0 0 0 0 0 0 3

M
avail

0 0 0 0 0 0 1

M
new

0 0 0 0 0 0 0 10

I
avail

6

I
new

8

0 1 2 3 4 5 8

0 0 0 0 0 0 0

(e) Assign Slots
0 1 2 3 4 5 -1 6-1

0 0 0 0 0 0 0

(f) Decompress New

 Blocks into Cache

Cache

8

0 1 2 3 4 5

ZFP Decompression Kernel

K
age

3

(d) Sort Available Slots by Age

SortByKey(I
avail

, K
age

)

Fig. 4.33: BCMC’s GPU LRU cache determines which of the blocks needed for the surface
are already in the cache and those that must be decompressed and added to it (also see
Algorithm 1). (a) First, the age of each slot is increased. (b) Next, a GPU kernel marks the
new blocks that must be decompressed, the kernel also marks slots occupied by blocks that
are not needed as available. The kernel resets the age of slots occupied by blocks needed
for the current surface and marks them unavailable. (c) Lists of the IDs of the available
slots and new blocks are compacted on the GPU. (d) The available slots are sorted by age,
to evict the oldest blocks first. (e) The new blocks are assigned to available slots in the
cache. (f) New blocks are decompressed into their assigned slot using the WebGPU ZFP
decompression kernel.

contrast to Liu et al., BCMC does not have access to the full decompressed volume in a 3D

texture. Thus, marking only the blocks containing the isovalue as active is not sufficient,

since the data required for their dual grid cells sharing vertices with neighboring blocks

would be missing (Fig. 4.35). To ensure the neighbor data are available, BCMC marks a

block as active if its range or the union of its range and any of its neighbors’ ranges contain

the isovalue. The output of the active block selection kernel is the active mask list Mactive.

The list of active block IDs, Iactive, is computed using a GPU prefix sum and specialized

stream compaction, “StreamCompactIDs.” The specialized compaction writes the element’s

index in the active mask list at the output offset (computed in the prefix sum) instead of the

element’s value, compacting the IDs of the active elements.

159

(d) Compute

Vertices

1 1 1 0 0 1 0 00M
occ

(c) Compute

of Vertices

& Output Offset

N
0

N
2

N
5

N
1

(a) Select

Occupied Blocks

0

1

0

0

1 1

1

(b) Prefix Sum M
occ

Stream Compact IDs

0 1 2 5I
occ

n
vert

,O
vert

PrefixSum(N0
N
2
N
5

N
1)

O
vert

[0] O
vert

[1] O
vert

[2] O
vert

[3]

Fig. 4.34: (a,b) The active blocks are filtered down to just those that will output vertices, (c)
after which BCMC computes the number of vertices that will be output by each block and
(d) outputs them to a single vertex buffer.

A B

C D

Fig. 4.35: The dual grid of block A (dashed) overlaps its neighbors B, C, D, which must also
be decompressed to provide the data required to compute the surface (orange).

160

4.3.4.2 GPU-Driven LRU Block Cache

Given Mactive and Iactive, BCMC determines which active blocks are already in the cache

and which must be decompressed and added to it. This task is performed using an entirely

GPU-driven LRU cache, to avoid reading back Mactive or Iactive to the host and to minimize

the amount of serial computation performed in the algorithm.

The cache is comprised of a growable number of “slots,” within which a decompressed

block can be stored. The initial number of slots is set by the user, e.g., enough to store 10%

of the blocks in the volume. The cache uses two arrays to track the status of each slot: Sage,

which stores the age of the item in the slot, and Sblock, which stores the ID of the block in the

slot or -1 if the slot is empty. An additional array, Islot, stores the ID of the slot occupied by

each block, or -1 if the block is not cached. A final array stores the actual data for each slot,

containing the decompressed 43 blocks.

The GPU parallel cache update proceeds as shown in Algorithm 1 (also see Fig. 4.33).

First, each slot’s age is incremented in parallel using a compute shader. Next, the list Mnew

is computed, that marks, for each block, if it must be newly decompressed and added to

the cache; and the list Mavail updated, that marks, for each slot, if it is available. The lists

Mnew and Mavail are computed in a compute shader run for each block b that checks if the

block is active (i.e., Mactive[b] = 1). If the block is active and cached (i.e., Islot[b] 6= −1), the

thread resets the age of its slot, marks the slot unavailable in Mavail , and marks the block

as not new in Mnew. If the block is active and not cached, it is marked as new. If a block is

cached and not active, its slot is marked as available, making it a candidate for eviction.

A GPU prefix sum is then performed on Mnew and Mavail to compute the number of new

blocks and the number of available slots. If there are no new blocks, the cache update is

terminated. If fewer slots are available than are needed, the cache is grown. The new slots

added when growing the cache are marked available and assigned a high age.

The “StreamCompactIDs” kernel is used to compute the list of new block IDs, Inew, and

available slots, Iavail . The active list and output offsets come from Mnew, Onew and Mavail ,

Oavail , respectively. The available slot ages, Kage, are computed with a standard stream

compaction using the output offsets Oavail . Iavail is then sorted in descending order by age

using a GPU sort by key, where Kage contains the keys. Finally, each new block is assigned a

slot s from Iavail using a compute shader run for each new block. If a block p was previously

161

1: function UPDATECACHE(Mactive)
2: IncrementSlotAge(Sage)
3: Mnew, Mavail ← MarkNewBlocks(Mactive, Sage, Islot)
4: nnew, Onew ← Pre f ixSum(Mnew) ⊲ Exit if nnew = 0
5: navail , Oavail ← Pre f ixSum(Mavail) ⊲ Grow if nnew > navail

6: Inew ← StreamCompactIDs(Mnew, Onew)
7: Iavail ← StreamCompactIDs(Mavail , Oavail)
8: Kage ← StreamCompact(Mavail , Oavail , Sage)
9: SortByKey(Iavail , Kage) ⊲ Sort available slots by age

10: AssignSlots(Inew, Iavail , Sage, Sblock, Islot)
11: DecompressBlocks(Inew, Islot)

Algorithm 1: The GPU-driven cache update algorithm. Each function call corresponds to a
compute shader dispatch or data-parallel primitive (prefix sum, stream compact, sort) run
on the GPU.

stored in the slot (i.e., Sblock[s] 6= −1), it is evicted by setting Islot[p] = −1. The new block

is then set as the item in the slot, the slot assigned to the block in Islot, the slot marked

unavailable, and the slot age reset to 0.

4.3.4.2.1 Decompression of blocks into cache slots. The WebGPU port of ZFP’s

CUDA decompressor (Section 4.3.3.4) is used to decompress the data, by modifying it

to decompress just the blocks specified in Inew. Each new block b is decompressed by a

thread on the GPU in a compute shader. The thread writes the 43 decompressed block as

a row-major array into the cache slot assigned to the block (Islot[b]). This approach has

the added benefit of eliminating the scattered writes required when outputting the entire

volume, improving the write access patterns of each decompression thread.

4.3.4.3 Loading Blocks and Neighbor Voxels into Shared
Memory

Data from both the block itself and its neighbors in the +x/y/z directions, with which

the block’s dual grid shares vertices (Fig. 4.35), are needed to compute the block’s vertices.

As BCMC does not store the full volume, accessing the neighbor voxels cannot be done

with a 3D texture lookup as done by Liu et al. [172]. Instead, BCMC loads the data for the

block’s dual grid into shared memory to enable fast access to the data by the thread group

processing the block. This step is performed by both the vertex output location computation

(Section 4.3.4.4) and the final vertex computation (Section 4.3.4.5). In both steps, BCMC

assumes the block has neighbors along all axes, i.e., a 43 dual grid, and runs a thread group

162

per block with 64 threads, one thread per dual cell.

First, the thread group loads the 64 voxels of the 43 block into shared memory, with each

thread loading a voxel. If the block has neighbors to its positive side, the block dimensions

are increased along the corresponding axis by one. However, it is not safe to assume the

required face, edge, and corner neighbors exist, as only the active blocks are guaranteed to

be decompressed and in the cache. For example, a block that is marked active because it is

needed by a neighbor may not have any of its +x/y/z neighbors active, and would thus

attempt to load invalid data. After tentatively increasing the block’s dimensions based on

its location in the grid, the thread group tests if the required neighbors are active in Mactive.

If the required face, edge, or corner neighbor in some direction is not active, the block’s size

along that direction is reset to 4.

The thread group then loads the required neighbor data from the neighbor blocks. The

threads responsible for the block’s face, edge, and corner voxels are also responsible for

loading the neighboring face, edge, and corner voxels, respectively. Finally, the thread

group is synchronized using a barrier to wait until the data are loaded.

4.3.4.4 Computing Vertex Output Locations

The next step in BCMC is to determine the output offsets for each block’s vertices and

the total number of vertices to be output. Before doing so, a compute shader is run over

the active blocks to determine the subset that will output vertices (Fig. 4.34a). Each thread

group loads a block into shared memory as described in Section 4.3.4.3. Each thread then

checks if its dual cell will output a triangle and writes this result to shared memory. If the

block will output a triangle, thread 0 marks the block as occupied in Mocc; otherwise, it is

marked as empty. The list of occupied block IDs, Iocc, is found through a GPU prefix sum

over Mocc and “StreamCompactIDs” (Fig. 4.34b). It is not sufficient to mark unoccupied

each block that was marked active as a result of the union of it and one of its neighbors’

ranges, as the block’s dual cells shared with the neighbor may output vertices that the block

is responsible for computing (Fig. 4.35). However, it may be possible to determine this by

checking which side the neighbor was on.

BCMC then computes the output offsets for each occupied block’s vertices (Fig. 4.34c).

After loading the block and neighbor data into shared memory, BCMC proceeds as described

163

by Liu et al. [172] to compute the vertex output offsets. Each thread computes the number

of vertices that will be output by its dual cell and writes this value to shared memory. The

thread group then performs a sum reduction to compute the total number of vertices that

will be output by the block, which thread 0 writes to global memory. The per block output

offsets and total output size are computed by a GPU prefix sum over the per block vertex

counts. As suggested by Liu et al., BCMC does not perform a global prefix sum or store the

per voxel prefix sums computed within each block.

4.3.4.5 Vertex Computation

Each thread group loads an occupied block into shared memory and computes the

number of vertices that will be output by each voxel as before, writing the result to shared

memory. The thread group then performs a parallel prefix sum over this shared memory

to compute the per voxel output locations relative to the block’s global offset. Each thread

then computes the vertices for its dual cell and writes them to the global vertex buffer

(Fig. 4.34d). Outputting an indexed triangle mesh using Flying Edges [250] within each

block, as proposed by Liu et al. [172], is also possible.

To reduce the memory required to store the vertices, BCMC adopts a compressed vertex

format. Vertices are stored relative to the block origin and quantized to 10 bits per coordinate.

For each vertex, BCMC stores the three 10-bit coordinates packed into a uint32, along with

the block ID as a second uint32, for a total of 8 bytes per vertex. Blocks are indexed in

row-major order, providing a simple mapping from ID to 3D position. When rendering, the

block position is computed from its ID and used to offset the dequantized vertex.

4.3.5 Performance Evaluation

BCMC is evaluated on nine data sets, varying in size and isosurface topology (Table 4.7).

As ZFP supports only floating point data; the nonfloat data sets are converted to 32 bit

floating point before compressing them. ZFP is able to compress the data sets to far less

than 8 or 16 bits per voxel, and bitrates as low as 2 have been demonstrated to have low

impact on quality [171]. The benchmarks are run on a Surface Pro 7 with an integrated GPU

with 3.8GB of VRAM and a desktop with an RTX 2070 with 8GB of VRAM.

The isosurfaces used in the evaluation can be classified into “nested” and “turbulent

sheet” topologies, and have different cache behaviors. Isosurfaces with nested topologies

164

Table 4.7: Example isosurfaces on the data sets used in the benchmarks. Isosurfaces are
typically sparse, requiring little data to be decompressed and cached to compute each
surface, and even fewer blocks to be processed to compute the surface geometry.

Image Original
Adaptive

Prec. & Res.
Isovalue % Active Cache % Occ. Triangles Vertex Data

2563

67.1MB
4.1MB
≈ 1

16
39 38.9% 26MB 19.8% 2.1M 51MB

2563

67.1MB
4.1MB
≈ 1

16
117 11.7% 7.8MB 5.9% 743K 18MB

{512,
512,
373}

391MB

49.3MB
≈ 1

8
409 22.6% 89MB 9.9% 6.2M 148MB

5123

537MB
67MB
≈ 1

8
1.19 15% 81MB 9% 9.5M 229MB

{832,
832,
494}

1.37GB

86MB
≈ 1

16
868 5% 70MB 3% 6.7M 160MB

{1024,
1024,
795}

3.33GB

209MB
≈ 1

16
111 5% 167MB 2% 10.2M 245MB

{1024,
1024,
1080}

4.53GB

283MB
≈ 1

16
21290 4.5% 227MB 1.9% 11.2M 270MB

10243

4.3GB
537MB
≈ 1

8
1.39 26% 1.1GB 12% 67M 1.6GB

{10240,
7680,
1536}

966GB

199MB
≈ 1

4854
0.936 43% 1.4GB 24% 135M 3.3GB

165

are typical in MRI and CT scans (Skull, Foot, Backpack, Stag Beetle, Kingsnake, and

Chameleon), although they do occur in simulations as well (Plasma). In the nested topology

isosurfaces, surfaces at lower values enclose those at higher values. Such isosurfaces can be

extremely cache friendly, as after computing a surface at a lower value, a large number of

the blocks will be reused for neighboring surfaces, and even distant enclosed ones.

Isosurfaces with turbulent sheet topologies are typically found in simulations where

the surface represents a moving interface, e.g., fluids mixing or turbulent flows (Miranda

and DNS). In a turbulent sheet topology isosurface, surfaces move along one or more

axes of the domain with the isovalue, and do not enclose each other. Moreover, the

turbulent nature of the surface results in a large number of blocks being occupied and

output triangles. Isosurfaces with turbulent sheet topology tend to be less cache friendly for

random isovalues, as different surfaces occupy different and distant regions of the domain,

with relatively few shared blocks; however, neighboring isovalues do share blocks as the

surface does not make large jumps in the domain.

4.3.5.1 Isosurface Extraction

Three benchmarks are run on each data set, covering different levels of cache friendliness

and user interaction modes when exploring a volume. The first benchmark computes 100

random isovalues, representing a cache-unfriendly exploratory use case. The other two

benchmarks sweep the isosurface up or down the data set’s value range, as may be done

when comparing neighboring values in the data, and are relatively cache friendly.

Although the sweep up and down benchmarks may seem to be the same, the cache

behaviors of the two differ on the nested isosurfaces. On these data sets, an up sweep will

frequently operate in cache, as the number of active blocks decreases and the inner surfaces

are likely to require blocks that were already decompressed for the previous containing

surface. However, a down sweep is less likely to hit cache, as the surface area of the

isosurface increases to cover more blocks, with these blocks less likely to be cached.

As before, the isovalues are sampled over a value range covering surfaces typically of

interest to users, excluding noise and values so high as to produce few output triangles.

Example configurations for each data set are shown in Table 4.7. The first computation in

each benchmark is discarded, as WebGPU has a high first launch overhead. The average

166

cache hit rates and extraction time for the benchmarks are shown in Table 4.8.

On the nested isosurface data sets, high cache hit rates are observed for all three

benchmarks, with sweep down performing the worst on average due to the lower cache

hit rate. A lower cache hit rate means a larger number of blocks must be decompressed

to compute each surface, impacting compute time. It is interesting to note that random

achieves a higher hit rate than sweep down. After computing some sampling of the nested

isosurfaces in random, the cache contains the most frequently used blocks across these

surfaces, allowing for high cache hit rates and better performance.

In contrast, on the turbulent sheet data sets, high cache hit rates are observed on the

sweep benchmarks and low hit rates on the random benchmark. When computing random

isovalues, the surface can make large jumps in the domain, covering entirely different

regions of the volume. This issue is exacerbated by the high resolution of the data sets

and the turbulent nature of the computed isosurfaces, leading to a large number of blocks

covered by each surface with few shared between them. As a result, large numbers of

blocks must be decompressed each time, severely impacting compute time. However, the

surface does not move significantly when sweeping the isovalue up or down, resulting in

high cache hit rates and better performance.

As indicated by the cache hit rates on the nested isosurface data sets, so few new blocks

must be decompressed to compute each new surface (on average, < 0.5% of the total blocks

in the data set) that decompression does not occupy a large portion of compute time. The

bulk of time is spent in the first pass to select the active blocks and the mark new items step

of the cache update, the latter of which then determines no new items are to be added.

In contrast, on the turbulent sheet data sets, a larger percentage of time is spent in

decompression due to the higher miss rate and higher absolute number of active blocks. On

the random benchmarks, decompression occupies an average of 63% of compute time, with

an average of 12% of blocks decompressed for each new surface. On the sweep benchmarks,

time is more evenly divided among decompression, finding active blocks, and updating the

cache, with an average of 0.8% of blocks decompressed for each new surface.

When new items need to be added to the cache, the bulk of the cache update time is

spent sorting the available slots by age. Highly optimized libraries such as Thrust [15] and

VTK-m [196] that provide optimized parallel primitives are not available in WebGPU, and

167

Table 4.8: Average cache hit rates and isosurface computation performance for the data
sets and benchmarks performed. Isosurfaces are typically sparse and occupy neighboring
regions of the domain, leading to high cache rates for the sweep benchmarks. The topology
of the nested isosurfaces also allows for high hit rates on random isovalues due to the high
amount of overlap, whereas the turbulent sheet isosurfaces do not overlap as much and see
far lower hit rates. Although the cache space required for the Miranda and DNS is small
enough to fit in the Surface Pro’s 3.8GB VRAM, for most isovalues, the cumulative size of
the cache and output vertex data is not.

(a) Random.

Data Set Hit Rate RTX 2070 Surface Pro 7

Skull 98.4% 57.7ms 99.8ms
Foot 98.9% 57.1ms 107.9ms
Backpack 99.4% 68.1ms 251.0ms
Plasma 96.4% 107.2ms 318.6ms
Stag Beetle 98.2% 123.1ms 322.1ms
Kingsnake 99.2% 212.6ms 926.5ms
Chameleon 90.9% 371.6ms 1342ms
Miranda 46.8% 2218ms (oom)
DNS 62.9% 2632ms (oom)

(b) Sweep up.

Data Set Hit Rate RTX 2070 Surface Pro 7

Skull 100% 54.4ms 85.1ms
Foot 100% 58.4ms 99.2ms
Backpack 100% 99.1ms 216.3ms
Plasma 99.8% 94.3ms 265.3ms
Stag Beetle 99.6% 125.1ms 337.8ms
Kingsnake 100% 185.3ms 811.1ms
Chameleon 98.9% 348.7ms 1470ms
Miranda 95.7% 550.5ms (oom)
DNS 98.4% 972ms (oom)

(c) Sweep down.

Data Set Hit Rate RTX 2070 Surface Pro 7

Skull 94.8% 93.1ms 161.5ms
Foot 97.4% 90.1ms 164.4ms
Backpack 96.8% 109.7ms 349.3ms
Plasma 98.5% 126.1ms 431.8ms
Stag Beetle 92.0% 151.2ms 464.5ms
Kingsnake 97.0% 284.5ms 1306ms
Chameleon 96.6% 337.1ms 1482ms
Miranda 95.2% 549.6ms (oom)
DNS 97.9% 841.3ms (oom)

168

the unoptimized sort by key implemented in BCMC is a bottleneck when processing many

items.

4.3.5.2 Rendering Performance

Table 4.9 reports the rendering performance achieved on the example isosurfaces

computed in Table 4.7. BCMC outputs a triangle soup in a compressed vertex format,

which is rendered with WebGPU. On both the Surface Pro 7 and RTX 2070, the output

mesh can be rendered in real-time, even for large isosurfaces. Although the rendering

modality is relatively simple, these results are encouraging for large-scale data visualization

in general, demonstrating that WebGPU can achieve high framerates for large geometry.

The quality of the isosurfaces is primarily dependent on the reconstruction accuracy of the

compression method, which has demonstrated high accuracy even at high compression

ratios [119, 120, 171]. As the vertex buffer occupies a substantial amount of memory, it

would be valuable to explore applying implicit isosurface raycasting methods on top of the

existing block structure. The blocks can be seen as a macrocell grid [213] for space-skipping,

and implicit isosurface ray tracing performed within these blocks.

4.4 Summary

Supporting the ever-growing size of scientific data sets poses a continuing challenge

to post hoc visualization. Moreover, it is not sufficient to support processing the data only

at full resolution on HPC systems. To make massive data sets accessible to scientists, new

adaptive and multiresolution methods must be developed that enable exploring such data

Table 4.9: Rendering performance for the isosurfaces shown in Table 4.7. WebGPU is
capable of interactive rendering of large triangle meshes even on lightweight clients.

Data Set Triangles RTX 2070 (FPS) Surface Pro 7 (FPS)

Skull 2.1M 180 44
Foot 743K 174 89
Backpack 6.2M 146 25
Plasma 9.5M 118 24
Stag Beetle 6.7M 139 19
Kingsnake 10.2M 128 24
Chameleon 11.2M 123 19
Miranda 67M 53 (oom)
DNS 135M 36 (oom)

169

interactively in constrained environments, such as VR and the web browser. This chapter

has presented three works that address these challenges. The distributed framebuffer

provides a flexible asynchronous tile-based processing pipeline for distributed rendering,

enabling renderers to work across the spectrum of memory and compute scaling. The

scalability and flexibility of the DFB is demonstrated on interactive distributed data-, image-,

and hybrid-parallel rendering of massive data sets at full resolution with high-quality

illumination effects. The VR neuron tracing tool was developed through a collaborative

design study with neuronatomists to enable neuron tracing on large connectomics data sets

in VR. To support immersive interactive exploration of large data in VR, VRNT employs a

low-latency on-demand data processing approach based on a page-based processing system

and multiresolution data layout. A pilot study was conducted with expert neuronatomists

that demonstrated that the immersive interface and intuitive interaction modes provided

by VRNT improved neuron tracing performance and understanding. Finally, a fully GPU-

driven algorithm for isosurface extraction on block-compressed volumes, BCMC, was

proposed to enable accessible interactive isosurface extraction on massive data sets in

the web browser. BCMC decompresses and caches volume blocks as needed to reduce

its memory footprint and moves all computation to the GPU to achieve fast isosurface

extraction. BCMC achieves interactive visualization in the browser on the same 1TB DNS

data set that previously required a small set of nodes on an HPC cluster to render.

It is important to note that the techniques discussed are applicable beyond the contexts

that they were initially proposed in. For example, the scalable distributed rendering

provided by the DFB is also valuable for in situ rendering, as discussed in the next chapter.

The low-latency on-demand processing strategies developed to ensure high performance in

VR are also applicable to traditional desktop applications that wish to process massive data

sets while maintaining interactivity. Finally, BCMC is just as valuable outside the browser

in native applications, where it can be used for high-performance out-of-core processing of

massive volumes on GPUs. Bringing these approaches for adaptive and multiresolution

processing together provides a compelling view of future exascale post hoc visualization

tools, where massive data sets can be explored on workstations or laptops without major

sacrifices in interactivity or quality. There also remain exciting avenues to further develop

the work discussed in this chapter.

CHAPTER 5

IN SITU VISUALIZATION

Although the compute capability available to simulations has grown rapidly, the I/O

bandwidth available to save the simulated data has not. This widening gap between

FLOPs and I/O bandwidth means that far more data can be simulated than can possibly

be saved to disk for post hoc visualization, impacting the amount of scientific insight

that can be gained from massive simulations. In situ visualization has been proposed as

one approach to address this issue, and has been identified as a key technology to enable

science at exascale [5]. By running the visualization tasks during the simulation, in situ

visualization enables the visualization to access the data at a much higher resolution or

temporal frequency than could be saved to disk. However, a key concern when moving the

visualization to run in situ is the impact that the visualization will have on the simulation.

This chapter discusses work toward addressing this concern.

Rendering images is a common task performed in situ, as the resulting images are

small in size compared to the full data and can be saved frequently and viewed post

hoc. The rendered images have been used in a number of ways to enable different forms

of post hoc visualization. A common use case is to produce static images [272, 273] or

movies [74]. To provide some ability to interactively adjust the visualization parameters

post hoc, recent approaches have proposed rendering explorable image databases [7,80,142,

298,321]. Creating image databases requires rendering a large number of images, covering a

sweep of the desired visualization parameter space. Interactive approaches have also been

proposed that allow scientists to connect a remote visualization client to the simulation [129,

235, 280, 282, 319]. Although these applications differ widely in the number and type of

images rendered, they fundamentally require a highly scalable and flexible distributed

rendering technique to produce the images without incurring a significant impact on the

simulation. Section 5.1 discusses how the Distributed FrameBuffer (Section 4.1, [281]) can

171

be applied to enable scalable in situ rendering of image databases [275].

Although tightly coupled in situ visualization provides a clear benefit by allowing the

simulation and visualization to share memory directly, not all visualization tasks are well

suited to a tightly coupled configuration [17,74,108,195,235,323,325] The visualization task

may require access to more data than are stored on each rank, may not scale as well as the

simulation, may require more memory than is available on each node after considering

the space already occupied by the simulation, or may need more time to execute than the

simulation has budgeted for visualization.

One approach to address the first two issues is to adopt a data-staging in situ visual-

ization approach. Data-staging approaches move the visualization to run on a subset of

ranks that collect the required simulation data from the other ranks [17]. As a result, the

visualization task has access to more data than each rank’s individual piece of the domain

and is run at a smaller scale where it may actually perform better. Data staging for in situ

visualization follows a similar communication pattern to data aggregation for two-phase

I/O, allowing it to be easily integrated into simulations by integrating it within the I/O

pipeline [177, 284, 285]. The simulation can then simply adjust the frequency at which

it “writes” the data to run the in situ pipeline that transforms the data into the desired

visualization outputs. This ease of adoption makes data staging approaches a valuable

option even for tasks that can be run in a tightly coupled configuration. Section 5.2 discusses

work in progress on integrating support for in situ visualization into the adaptive spatially

aware two-phase I/O pipeline presented in Section 3.2.

Loosely coupled in situ visualization provides the flexibility to address all four chal-

lenges, making it a compelling option at scale [148, 149]. Loosely coupled approaches run

the visualization in a separate process from the simulation, and optionally on separate

compute nodes, to minimize its impact on the simulation. Running the visualization in

a separate process also gives it access to additional compute time without impacting the

simulation, as the visualization can continue processing while the simulation proceeds

with the next time step. Running loosely coupled in situ visualization on nodes other than

those used by the simulation gives the visualization access to additional compute and

memory capacity while further reducing its impact on the simulation. As with data staging

approaches, loosely coupled visualization can be run at smaller scales than the simulation

172

to avoid scalability issues. Section 5.3 discusses work on data transfer strategies to enable

portable, low overhead loosely coupled in situ visualization [278, 280, 282].

5.1 Accelerating In Situ Rendering of Image
Databases with the Distributed

FrameBuffer

Rendering the image databases used by explorable image database methods [7, 80, 142,

298, 321] involves in situ rendering of a large number of images, corresponding to a sweep

of the visualization parameter space. The visualization parameter space covers multiple

viewpoints, different isovalues, transfer functions, etc., requiring hundreds to thousands

of individual images to be rendered in situ. The resulting image database can then be

interactively explored post hoc by adjusting the selected parameter set to combine the

images in the database to create the desired visualization.

The work distribution over the ranks when rendering the image database is likely to

vary for each image, as each uses a different set of visualization parameters. Whereas for

one image some ranks may have little to no rendering work if their data are not visible for

the given parameters, the next image may be a close up view of just their data, making them

a bottleneck. One approach to address this issue is to render multiple images in parallel [1].

Rather than having underutilized nodes wait on those that have a higher workload to

complete the image, as would occur when rendering the images serially, they can instead

continue on to render other images for the database, where they in turn might have a higher

workload. This approach allows the nodes to automatically adjust the workload to complete

the image database faster, without requiring a complex load balancing or data movement

strategy.

This section discusses how the Distributed FrameBuffer [281] (Section 4.1) can be applied

to accelerate in situ rendering of image databases [275]. OSPRay [291], the ray tracing

framework within which the DFB is implemented, recently added support for asynchronous

single-node rendering, which the DFB is extended to support as well. Asynchronous

rendering enables applications to render multiple images with different scene configurations

in parallel, as is needed to accelerate the rendering of large image databases. To render

multiple images in parallel, the application must create one framebuffer for each active

render, along with different OSPRay scene objects for each unique configuration of the

173

scene to be rendered. Rendering an image database frequently involves rendering the same

data with different appearance information, for example, a volume with multiple transfer

functions. OSPRay separates the underlying data (i.e., the volume) from its appearance

information (i.e., the transfer function), allowing multiple asynchronous renders to share

the same underlying data to reduce memory overhead.

The DFB’s applicability for accelerating image database rendering is demonstrated

through a mini-app called mini-cinema1 that outputs Cinema-style image databases [7].

Mini-cinema supports volume rendering and isosurface rendering (Fig. 5.1). Isosurfaces can

be rendered explicitly by extracting triangles using VTK or by using OSPRay’s implicit iso-

surfaces to reduce memory overhead. The application also supports transparent isosurfaces

and can compute ambient occlusion on the isosurface by duplicating it across the ranks to

provide ghost zones. A new OSPRay scene is created for each unique set of appearance

configurations, applying the new appearance information to the underlying shared volume

and geometry data. As the new objects created for each reference only the existing data,

the largest amount of additional memory required for each asynchronous render is the

framebuffer to store the output image. The mini-app can be configured to render a specific

number of images in flight, to limit memory consumption and avoid oversubscribing those

nodes that are more heavily utilized for multiple frames. After an asynchronous render has

completed, the image is written to disk on a background thread.

A set of benchmarks are run using mini-cinema to measure the impact of varying the

number of images in flight on total task completion time. The benchmarks are run using

the 10243 Miranda data set [56] and renders two isosurfaces, containing 62.47M and 67.65M

triangles respectively, combined with the volume data over a 250 camera position orbit for

a total of 500 images. Each image rendered is 1024× 1024. The benchmark is run on 16

Stampede2 Skylake Xeon (SKX) nodes with one rank per node, and the number of images

in flight varied from 1 to 128. Each Stampede2 SKX node has two Intel Xeon Platinum 8160

CPUs and 192GB of RAM. When run with one image in flight, the image set is rendered in

23.7s, when run with up to four images in flight it is rendered in 14.8s, an improvement

of 8.9s. Increasing the allowed number of images in flight further does not positively or

1https://github.com/Twinklebear/mini-cinema

174

Fig. 5.1: Example images rendered using the image database rendering test app, mini-
cinema. The app uses OSPRay’s asynchronous rendering API and the DFB to render
multiple images simultaneously to better utilize the nodes. The Richtmyer-Meshkov [54]
(left) uses ghost zones for ambient occlusion on the isosurface. The Miranda [56] (right)
combines a semitransparent isosurface with the volume.

negatively affect the total task time, likely due to the images completing quickly enough that

not many more than four images are in flight at a time. The best number of images in flight

is highly dependent on the rendering configuration. More expensive individual images

may result in more in flight at a time, and lead to reduced performance if oversubscribing

the nodes.

5.2 Data Staging In Situ Within an Adaptive
Spatially Aware Two-Phase

I/O Pipeline

In a data-staging in situ pipeline, visualization tasks are run on a subset of ranks that

collect the data to be processed from the other ranks, in the same manner that the aggregator

ranks collect data to be written to disk from the ranks in their aggregation subgroup in

a two-phase I/O pipeline. This similarity has made the I/O library a common path for

integrating support for in situ visualization, as done by ADIOS [177] and GLEAN [284, 285].

From a practical standpoint, integrating in situ visualization into the I/O library enables

simulations already using the I/O library to adopt in situ visualization without any code

modification, making it a valuable approach even for visualization tasks that are suited

to tightly coupled in situ use cases. I/O library-based data staging methods are typically

paired with a distributed data query system, for example, PreDatA [326], DataSpaces [68],

or FlexPath [63]. A distributed data query system is required to support visualization tasks

175

that need access to more data than are available locally on each aggregator rank during I/O.

I/O library-based data staging in situ visualization has been used effectively in practice

to enable scalable in situ visualization. The scalability of such approaches is dependent

on the I/O library’s scalability; however, the I/O library is often not the bottleneck in the

pipeline. The performance of the in situ pipeline is typically limited by the scalability of the

visualization tasks being run and the amount of data they must fetch from other ranks.

To ease integration of in situ visualization into simulations using the adaptive, spatially

aware two-phase I/O approach proposed in this dissertation (Section 3.2), it is similarly

possible to integrate support for in situ visualization within the I/O pipeline. In situ tasks

that require only local data can be run on the ranks prior to data aggregation, while those

that require access to more data or perform better at smaller scales can be run on the

aggregators after the construction of the BAT data layout, as shown in Fig. 5.2. Visualization

tasks run on the aggregators can then leverage the BAT layout to accelerate spatial and

attribute filtering. In situ visualization tasks are also able to leverage the same data query

system used for reads to provide scalable distributed data access in situ. To fetch data from

other ranks, visualization tasks send spatial queries to the rank with the desired data, as

done for reads (Section 3.2.2). Data queries can optionally include attribute filters to reduce

the amount of data that are transferred back to the requesting rank.

Integrating in situ visualization into the adaptive, spatially aware I/O pipeline proposed

(d) In Situ
Visualization

D
ata R

eq
u

ests to
o

th
er A

g
g

reg
ato

rs

A

B

C

A

6

0

2 4

B

C

6

0

2

4

(a) Adaptive Aggregation Tree Construction
& Aggregator Assignment

Gather particle
counts to rank 0 Adaptive Aggregation

Tree Leaves

Aggregator Leaf
Rank Assignment

(b) Data Transfer
(c) Data Layout

Build

Fig. 5.2: The spatially aware two-phase I/O pipelines can be modified to run in situ
visualization in a data staging configuration, by running the visualization tasks on the
aggregators. The above illustration demonstrates such an integration within the aggregation
tree two-phase I/O pipeline. The same method of fetching data from read aggregators used
during reads can also be used to enable distributed data access for in situ visualization tasks.
Moreover, the BAT layout built during I/O is available on each aggregator to accelerate
spatial and attribute queries.

176

in this dissertation provides some additional benefits over existing approaches in nonadap-

tive or spatially unaware I/O pipelines. First, the I/O load balancing performed by the

aggregation tree implicitly load balances visualization tasks that scale with the particle count

by computing aggregation subgroups that contain roughly equal numbers of particles. Prior

work has demonstrated that load balancing can improve performance of tightly coupled in

situ by leveraging the simulation’s built-in load balancer [231]. Similar performance benefits

could be expected when using the aggregation tree for data staging in situ. Moreover, the

aggregation tree is not tied to a specific simulation’s load balancing strategy, enabling

load balanced in situ visualization in any simulation using the method. Furthermore, by

adopting a spatially aware aggregation strategy, the presented I/O approaches ensure

that the data on each aggregator form a convex subregion. The data access patterns of

visualizations tasks frequently exhibit spatial locality, or when run distributed, decompose

the data into convex subregions for processing. By providing a convex subregion on each

aggregator, it is possible to reduce the amount of data that would have otherwise been

fetched from other ranks to compute the visualization.

5.3 Low Overhead Loosely Coupled In Situ
Visualization

Separating the visualization and simulation into separate processes provides several

benefits at scale [148], although such separation is not without its own challenges. A

common challenge when adopting loosely coupled in situ visualization is the task of

efficiently transferring data between the simulation and visualization. As the two are no

longer run in the same process, some form of synchronization and data communication is

required, either via shared memory or the network. Furthermore, when run in an M : N

configuration of M simulation ranks and N visualization ranks where M > N, it may be

desirable to restructure the data from the simulation’s M regions down to N regions to

provide the visualization task a simpler data distribution to process. This sections discusses

work on two data transport models for low-overhead loosely coupled in situ visualization.

Two methods for transferring the data from the simulation to the visualization are

discussed: a data restructuring model and a simulation-oblivious model. Both models

share common functionality to support on-demand execution of the visualization, flexible

M : N configurations, and to reduce memory overhead (Fig. 5.3). To support on-demand

177

Simulation

Client

socket handshake
Intercommunicator

Simulation

Client

(a) Shared node configuration.

Client

socket handshake

Simulation Simulation Client

Intercommunicator

(b) Separate node or resource configuration.

Fig. 5.3: Visualization clients using the restructuring or simulation-oblivious data transport
models can be run on the same nodes as the simulation (a), and thus take advantage of
shared memory data transfers at the cost of oversubscription, or on separate nodes, where
the applications will not impact each other at the cost of communicating over the network
(b). (a) shows a 4 : 1 configuration run on two nodes, (b) shows a 2 : 1 configuration on four
nodes.

execution, visualization clients using the presented methods can connect and disconnect as

desired from the simulation using a socket handshake. The clients can be started manually

by the user [108] or automatically using, for example, in situ triggers [161]. To allow for a

wide range of M : N configurations, neither approach imposes requirements as to where

the visualization clients are run. The clients can be run on the same nodes as the simulation,

distinct nodes on the same HPC resource, or an entirely separate HPC resource. Finally,

to reduce memory overhead, the approaches do not buffer the previous time step to send

to clients that request data while the next time step is being computed. Instead, clients

requesting data block until the next time step is complete and can be sent directly from the

simulation’s data buffers. Each approach is implemented in two lightweight libraries, one

178

that is linked into the simulation and another that is linked into the visualization.

Section 5.3.1 discusses a spatially aware data restructuring model for particle data [282].

The restructuring model treats the simulation as a data server that accepts spatial queries

from the visualization clients. The clients are thus free to query data from the simulation to

adjust the data distribution as needed for the computation being performed, e.g., to each

retrieve a single convex subregion on each client. The restructured data distribution matches

that which would be used when running the visualization tasks post hoc, simplifying the

process of migrating visualization tasks to run in situ.

However, restructuring the data to match the visualization client’s parallelism comes

at some cost. Moreover, as restructuring is performed while transferring data to the

visualization clients, the simulation must wait for the restructuring to complete before

moving on to the next time step. Section 5.3.2 discusses a simulation-oblivious data

transfer model that minimizes the impact of data transfer on the simulation [275, 280].

The simulation-oblivious model treats each rank as an opaque block of bytes. These

blocks are assigned to the visualization clients using a simple rank-based mapping. By

eliminating data restructuring during data transfer, the simulation-oblivious model is able

to achieve high data transfer performance and minimize the impact of the visualization on

the simulation, while leaving the visualization clients free to restructure the data after the

transfer if desired.

The models presented are evaluated in Section 5.3.3. The simulation-oblivious model is

evaluated on in situ visualization of molecular dynamics and turbulent flow simulations

to study its impact on the simulation when run in different proximity configurations. The

evaluation demonstrates that the simulation-oblivious model provides a compelling option

to achieve minimal impact in situ visualization. Finally, the data transfer costs of the

restructuring and simulation-oblivious data transport models are compared with each other

and existing restructuring approaches to evaluate the performance cost of restructuring.

5.3.1 A Spatially Aware Data Restructuring Model
for Particle Simulations

The restructuring-based data transfer model for particle simulations treats the simulation

as a data server that can respond to spatial queries from visualization clients (Fig. 5.4). This

model allows visualization clients to dictate how data are distributed over the visualization

179

ranks, and to query additional neighbor data from the simulation if needed.

5.3.1.1 On-Demand Visualization Client Connection

To support on-demand connection between the visualization and simulation without

losing MPI’s support for high-speed networks and shared memory data transfers, the

restructuring model uses facilities in MPI for creating communicators that connect separate

processes together, MPI_Comm_accept and MPI_Comm_connect, along with a socket hand-

shake (Fig. 5.3). After initializing the simulation, a background thread is launched on rank 0

of the simulation that opens a socket to listen for incoming client connections on a specified

port. Visualization clients can connect to the simulation by first opening an MPI port to

establish a communicator on. Each time the visualization client wishes to query data, rank

0 of the client connects to the simulation’s socket and sends over its MPI port information.

The MPI port information received on the simulation is pushed onto a list of pending data

requests to be sent the next time step when it is ready.

After each time step, the simulation checks if any clients have requested data. For each

data request, the simulation checks if an MPI communicator has already been established

with the client by looking up its MPI port name in a hash map of established communicators.

If a communicator was already established between the simulation and client, the processes

proceed to handle the data query as described in the following section. If not, the processes

must first establish an MPI communicator to be used for data transfers between them. To

do so, the simulation connects back to the client’s MPI port by calling MPI_Comm_connect;

the clients are waiting in a matching call to MPI_Comm_accept for the simulation to connect

back to them.

5.3.1.2 Data Query

Each query begins with rank 0 of the simulation broadcasting the global bounds of the

simulation domain to the visualization client. The visualization client can then decompose

the domain into blocks and assign its subregions to the visualization ranks as desired. Each

client rank retrieves the data within their assigned subregions by sending one or more 3D

bounding boxes to the simulation ranks. The simulation ranks loop through the client ranks

and receive the desired box queries from each. Each simulation rank then determines which

of its particles are contained in the box and sends them back to the client. To reduce memory

180

Simulation

Visualization

Client

Simulation Data

Distribution

Fig. 5.4: Data are restructured from the simulation to the client’s desired distribution during
data transfer. Each client rank requests a spatial subregion from the simulation and receives
back the contained particles. Here the visualization client partitions the domain among
four ranks, of which each owns some subregion (blue lines), and each requires a ghost zone
around the subregion (orange dashed lines and highlight). Each rank requests the entire
bounding box of its subregion and the ghost zone from the simulation to fetch its data.

overhead, this determination is done by performing an in-place sort on the particles to

partition the set of particles into two subarrays. The subset of particles that are contained in

the query box can then be sent directly from this sorted buffer to the client.

Although this approach allows the visualization clients to set the data distribution as

desired, the data query and restructuring process takes some time. The cost of this step

scales with the number of simulation ranks and visualization ranks. The simulation must

wait for this process to complete before continuing on to the next step, which translates to a

direct performance impact on the simulation. Although constructing additional hierarchies

on the data to accelerate spatial queries or using MPI asynchronous messaging to handle

multiple requests at a time could improve performance, both approaches would require

additional memory, to store either the acceleration structure or the temporary buffers

being referenced by the asynchronous messages. Instead, it is possible to remove data

restructuring from the in situ data transfer layer entirely, as discussed in the following

section.

5.3.2 A Simulation-Oblivious Data Transport Model

The simulation-oblivious data model treats each simulation rank as an opaque block of

bytes, the interpretation of which is left up to the simulation and client. Specifically, the

model does not inspect, adjust, or restructure the input data distribution provided by the

simulation, but instead simply forwards each rank’s data to the assigned client. Each client

181

rank receives one simulation state from each simulation rank it is assigned to process data

from, allowing for M : N configurations (see Fig. 5.5).

If the simulation and visualization differ in their parallelism model (i.e., MPI-only vs.

MPI + threads) or scalability, an M : N configuration can be used to run each in its ideal

configuration. In a 1 : 1 configuration, each client is assigned a single simulation rank’s

data. When M > N each client is assigned data from M
N simulation ranks, any remainder is

assigned evenly among the clients. After the data have been transferred, the client ranks

can restructure the data if desired, or use the distinct set of states directly. Although this

oblivious model supports only M ≥ N, since it does not support splitting a rank’s data to

restructure it, it is typically the case that the simulation is run at the same or higher level of

parallelism than the visualization. It is important to note that, depending on the simulation

and visualization configuration, it may not be possible for each individual client rank to

combine the received set of simulation states into a single convex region.

Although a somewhat primitive data model, this simplified view provides some desir-

able benefits over restructuring approaches. Removing the restructuring process from the

data transfer step reduces computational cost, allowing the simulation-oblivious approach

to achieve high network utilization and to reduce the amount of time the simulation spends

performing data transfers. This approach also eases integration into simulations with more

exotic mesh types or primitives that may not be supported by the standard restructuring

strategies. From a practical standpoint, this approach does not rely on complex distributed

data models or libraries, and can be easily deployed on a variety of systems, making it

useful for lightweight in situ integrations, or as the underlying data transport layer for in

full-featured systems (e.g., SENSEI [10]). Moreover, this simulation-oblivious approach

does not preclude the use of data restructuring on the client. After the data have been

transferred, the client ranks can make use of a distributed data query system [63, 68, 326] to

restructure the data as desired without impacting the simulation.

5.3.2.1 Portable Communication Between the Simulation
and Client

As in the restructuring based data transfer model, the simulation-oblivious model

uses a socket handshake to establish an MPI communicator between the simulation and

visualization processes (Fig. 5.3). To improve portability, the simulation-oblivious model

182

Simulation

Visualization

Client

Simulation Data

Distribution

Fig. 5.5: A 16 : 4 mapping of simulation data to visualization clients. With M > N each
rank is assigned M

N simulation states, with any remainder distributed among the clients.
Data are not restructured during transfer, and each client receives M

N distinct simulation
states to process.

provides an additional socket-based fallback intercommunicator. When attempting to estab-

lish the MPI intercommunicator, both the simulation and client test if the MPI_Open_port

API is available. If the API is not available, as is the case on Theta at Argonne National

Laboratory, the processes fall back to a socket-based intercommunicator; otherwise, an MPI

intercommunicator is established as described previously.

To establish the socket-based intercommunicator, each client opens a socket and listens

for connections from the simulation. Rank 0 of the simulation broadcasts rank 0 of the

client’s hostname and port number to the other ranks, which each connect to client rank 0

and receive the hostname and port numbers for the other clients. The simulation ranks then

connect to the remaining clients to establish an all-to-all socket intercommunicator. When

setting up a connection, the simulation rank sends its rank number to the client, which

sends back its own rank number. Each socket in the communicator on a rank is indexed by

the rank number of the rank on the other end to provide a send and receive API identical

to MPI where messages are sent to or received from a specific rank by its rank number.

Finally, to avoid flooding each client with incoming connections from a large simulation

run, the simulation ranks’ connection requests are rate limited. Without rate limiting, the

OS would see the large number of incoming connections as a network flooding attack. The

socket intercommunicator also enables running the clients on entirely different hardware

and software stacks or HPC resources. Performing the in situ visualization on an entirely

distinct cluster can be valuable for sensitive or time-critical applications, as discussed by

Ellsworth et al. [74].

183

5.3.2.2 M : N Asynchronous Data Query

After establishing the intercommunicator, the client can request to receive data from the

simulation. The simulation probes for incoming messages from rank 0 of the client after

each time step when calling libISProcess. The client can request to receive a new time

step or to disconnect from the simulation. If a new message is received, it is broadcast to

the other simulation ranks and processed collectively.

Data are transferred from the simulation ranks to the client ranks using the oblivious data

model and M : N mapping discussed above. The simulation-oblivious model first computes

N groups of M
N : 1 simulation to client groupings to establish the mapping from simulation

ranks to client ranks. Each such group transfers data to the client rank independently and

in parallel to the others. When using the MPI intercommunicator, data are transferred

using point-to-point communication. When using the socket intercommunicator, data are

transferred using the socket connection established on each simulation rank to the assigned

client. In contrast to the data query step of the restructuring approach (Section 5.3.1.2), the

simulation-oblivious approach avoids global all-to-all communication or synchronization

and scales well with the number of simulation and client ranks.

// Set the world bounds (per rank local/ghost bounds identical)

void libISSetWorldBounds(libISSimState *state, const libISBox3f box);

// Convenience method to set a 3D regular grid field

void libISSetField(libISSimState *state, const char *fieldName,

const uint64_t dimensions[3], const libISDType type, const void *data);

// Convenience method to set an array of local and optional ghost particles

void libISSetParticles(libISSimState *state, const uint64_t numParticles,

const uint64_t numGhostParticles, const uint64_t particleStride,

const void *data);

// Set an arbitrary 1D buffer of data

void libISSetBuffer(libISSimState *state, const char *bufferName,

const uint64_t size, const void *data);

// Call after each time step to send data to any clients

void libISProcess(const libISSimState *state);

Listing 7: The simulation interface is used to configure a simulation state object, which
stores pointers to the rank’s local data. Convenience methods are provided for regular 3D
fields and particles; arbitrary 1D buffers of data can be sent via the buffer API.

184

5.3.2.3 The Simulation Interface

To allow integration into a wide range of simulations, the presented simulation-oblivious

method is implemented in a library that exposes a C interface, libIS-sim, which is also

accessible through a Fortran wrapper. Simulations begin listening for clients by calling

libISInit and passing the port number to listen on. To make data available to clients, each

rank configures a libISSimState that stores pointers to the simulation data and metadata

describing it (Listing 7). The interface provides convenience wrappers for setting 3D regular

grid fields and particles, along with a generic API to pass arbitrary 1D buffers of data.

Internally, 3D fields and particles are treated the same as 1D buffers, since the data are

not inspected or restructured when sent to clients. Simulations using more complex data

representations, such as unstructured meshes, octree AMR, or block-structured AMR, can

use raw buffers to send data to clients. When sending raw buffers, the clients must be

tailored to the simulation and know how to interpret and process the incoming data. The

libISProcess function is called collectively by the simulation ranks to send data to any

clients that have requested to receive the latest time step.

5.3.2.4 The Client Interface

Similarly, to support visualization software that is commonly implemented in C++,

clients link a C++ library, libIS-client, that implements the simulation-oblivious data transfer

model (Listing 8). Clients first connect to the simulation by calling connect, after which

they can query data using the blocking or asynchronous API. Once the desired analysis has

completed, the client can disconnect and exit. The client can also check if the simulation has

quit by passing an optional parameter to the API calls, or explicitly checking sim_connected.

Each client receives a vector of simulation states, containing the M
N simulation ranks the

client was assigned to receive data from. Each state contains the 3D and 1D buffers sent by

the simulation, associated with their name, along with any particles.

5.3.2.5 Integration Within Existing In Situ Systems

The SENSEI project [10] was begun with the goal of addressing the portability and

reusability challenges introduced by the growing number of in situ frameworks. SENSEI

provides a unified interface for simulations that can map to various in situ library backends,

including tightly coupled, data staging, and loosely coupled modes (e.g., ParaView Cata-

185

lyst [78], VisIt LibSim [302], ADIOS [177]). A SENSEI in situ system consists of a bridge, data

adaptor, and analysis adaptor. The first two are tailored to the simulation and responsible

for converting its data representation to the VTK representation used by SENSEI. The

VTK representation is then passed to an analysis adaptor, which runs the desired in situ

visualization. The library implementing the simulation-oblivious approach also provides an

analysis adaptor and an in situ visualization execution application, to transparently provide

loosely coupled in situ visualization in SENSEI. Together, these act as a shim between the

simulation and the original SENSEI analysis adaptors specified by the user (Fig. 5.6). The

original analysis adaptors are run by the visualization execution application, which queries

the data from the simulation using the simulation-oblivious data transfer model.

The analysis adaptor takes the VTK data from SENSEI, constructs the equivalent

libISSimState, and calls libISProcess to send the data to the provided in situ visual-

struct SimState {

libISBox3f world, local, ghost;

// The rank that sent the data

int simRank;

// The 3D fields and 1D buffers sent by the simulation

std::unordered_map<std::string, Buffer> buffers;

// The particles sent by the simulation, if any

Particles particles;

};

// Connect to the simulation listening on rank 0 at host:port

void connect(const std::string &host, const int port,

MPI_Comm ownComm, bool *sim_quit = nullptr);

// Query the next time step, blocking until it is ready

std::vector<SimState> query(bool *sim_quit = nullptr);

// Asynchronously query the next time step.

// The future can be monitored for completion

std::future<std::vector<SimState>> query_async(bool *sim_quit = nullptr);

// Disconnect from the simulation

void disconnect();

// Check if the simulation has terminated

bool sim_connected();

Listing 8: The client interface is used to connect to a running simulation and query data
from it. Each client will receive M

N simulation states, containing data from the simulation
ranks it is assigned to receive data from.

186

Simulation Visualization
Execution

Application

Bridge

libIS-sim libIS-client

li
b

IS
 A

n
al

y
si

s
 A

d
ap

to
r

U
ser D

ata
A

d
ap

to
r User Analysis

Adaptor

Fig. 5.6: The architecture of the loosely coupled in situ visualization execution system for
SENSEI using the presented simulation-oblivious data transfer model.

ization execution application. The in situ visualization execution application uses the

library to query data from the simulation, constructs the equivalent VTK representation,

and passes it on to the desired analysis adaptors. The conversion back to VTK’s data

representation uses VTK’s zero-copy arrays, avoiding additional data copies within the in

situ analysis execution application.

Although running the SENSEI visualization with the simulation-oblivious approach

in a 1 : 1 configuration is straightforward, doing so for an M > N configuration is less so.

SENSEI’s existing data model expects one region per rank, i.e., a tightly coupled or a data

restructuring use case, requiring some special treatment for M > N configurations. For

example, an analysis adaptor that computes a global reduction over the data, such as the min

or max, or a histogram, may not produce the correct result if each client rank ran a for loop

over its assigned regions. To avoid requiring significant modifications to the visualization

code, data are passed to the user’s analysis adaptor as a vtkMultiBlockDataset, giving the

appearance of a single simulation rank with M
N distinct blocks of data.

5.3.3 Evaluation

The scalability and portability of the proposed simulation-oblivious model is evaluated

using two simulations, LAMMPS (Section 5.3.3.1) and Poongback (Section 5.3.3.2), on two

HPC systems. The evaluation is run on Stampede2 at the Texas Advanced Computing

Center (TACC) and Theta at Argonne National Laboratory. Both systems contain roughly

similar Intel Xeon Phi Knight’s Landing (KNL) nodes: KNL 7250 on Stampede2 and KNL

7230 on Theta. Stampede2 contains an additional partition of Intel Skylake Xeon (SKX)

nodes. Although the KNL nodes are similar on the two systems, the network architecture

differs significantly. Stampede2 employs a fat-tree topology Omnipath network, whereas

187

Theta uses a 3-level Dragonfly topology Cray Aries network. On Stampede2 MPI uses the

Omnipath network, which can provide up to 100Gbps of bandwidth; however, sockets use

the 1Gbps ethernet network. Theta does not provide an ethernet network. Instead, sockets

use the Aries network and can achieve a peak bandwidth of 14Gbps.

Section 5.3.3.1.1 conducts a weak scaling study to evaluate the performance portability

of the simulation-oblivious model using both the MPI and socket intercommunicators on

Stampede2 and Theta. The weak scaling study is run using LAMMPS and a test client

application that queries data repeatedly. The simulation-oblivious model is also evaluated

on an example use case of in situ image database generation for LAMMPS (Section 5.3.3.1.2)

and Poongback (Section 5.3.3.2.6) on Stampede2, to measure the rendering performance of

the client and the visualization’s impact on simulation performance. Finally, Section 5.3.3.3

compares the data transfer performance achieved by the two restructuring and simulation-

oblivious data transfer models against each other and the existing restructuring model used

in ADIOS.

The in situ image database rendering benchmark is an example of using the proposed

approach in combination with an OSPRay-based [291] rendering application to render image

databases, similar to those used in Cinema [7]. The image database rendering application

discussed in Section 5.1 is modified to query data using the simulation-oblivious data

transfer model. The benchmark repeatedly queries a time step and renders a camera orbit

around the data for a specified number of time steps.

5.3.3.1 Molecular Dynamics

LAMMPS [225, 242] is a large-scale molecular dynamics simulation code, which is run

MPI-parallel. The simulation-oblivious data transfer method is integrated into LAMMPS

through existing mechanisms for coupling LAMMPS with other codes [243]. This inte-

gration is done by building a wrapper application that behaves as the regular LAMMPS

executable, with the difference that before the simulation starts, the wrapper initializes the

data transfer library interface and installs a callback to call libISProcess after each time

step. After each time step, each simulation rank sends its local and ghost particles to its

assigned client.

188

5.3.3.1.1 Performance portability and scalability. The weak scaling benchmark uses

the Lennard Jones benchmark problem included with LAMMPS, which is replicated to

store 131k particles per simulation rank. The benchmark measures the bandwidth achieved

when querying data using an example client that simply prints out the received metadata.

The benchmarks are run in a 16 : 1 configuration, where each client receives approximately

2.1M particles, which amounts to roughly 45MB of data per client after including ghost

zones. Each group of 16 simulation ranks is placed on one node, and the client is run with

one rank per node.

The benchmark is run on 1 to 128 client nodes, corresponding to 16 : 1 to 2048 : 128

configurations, using the SKX nodes on Stampede2 (Fig. 5.7a) and the KNL nodes on

Stampede2 and Theta (Fig. 5.7b). In the shared node configuration, the client and simulation

are run across the entire set of nodes, using the same resources. In the separate node

configuration, the allocation of nodes is split in half between the simulation and client. To

evaluate performance portability between systems that do or do not support connecting

over MPI, the benchmark is run using the MPI and socket intercommunicators in the shared

and separate configurations.

As shown in Fig. 5.7, the independent communication mode employed by the simulation-

oblivious approach weak scales well, and can nearly saturate the 1Gbps ethernet network

when using sockets on Stampede2. When using MPI over Omnipath on Stampede2, the

simulation-oblivious approach is not network bound, and averages 11% network utilization

1 2 4 8 16 32 64 128
Client Nodes

0

5

10

15

20

25

B
an
d
w
id
th
p
er
-c
li
en
t
(G
b
p
s)

Stampede2 MPI shared
Stampede2 MPI separate
Stampede2 Sockets shared
Stampede2 Sockets separate

(a) Bandwidth per client on Stampede2 SKX.

1 2 4 8 16 32 64 128
Client Nodes

0

5

10

15

20

25

B
an
d
w
id
th
p
er
-c
li
en
t
(G
b
p
s) Stampede2 MPI shared

Stampede2 MPI separate
Stampede2 Sockets shared
Stampede2 Sockets separate
Theta Sockets separate

(b) Bandwidth per client on KNL.

Fig. 5.7: Bandwidth per client rank achieved in the weak scaling benchmark. The
independent communication strategy employed by the simulation-oblivious data transfer
model achieves good weak scaling. Shared node runs are able to leverage shared memory
for improved bandwidth.

189

on SKX and 2% on KNL. When using sockets on Stampede2, the approach averages 88%

network utilization on SKX and 74% on KNL. When using sockets on Theta, the approach

averages 30% network utilization. The relatively low network utilization achieved with

MPI could potentially be resolved by parallelizing the data transfer from the simulation

ranks to their clients. Although each group of simulation ranks and clients communicates

in parallel, the simulation ranks within a group send their data to the client in serial.

When run in the shared node configuration, shared memory can be used for higher

bandwidth by both the MPI and sockets intercommunicators, and both intercommunicators

are found to achieve similar performance. The shared node configuration avoids the

practical challenges of queuing and running a second job on the HPC system and is likely

to be a common use case for in situ visualization. The ability of both MPI and sockets to use

shared memory for higher bandwidth is especially promising for performance portability.

5.3.3.1.2 In situ image database rendering. The image database rendering example

uses the Rhodopsin benchmark input and runs LAMMPS in the same 16 : 1 configuration

as before. OSPRay uses an MPI + Threads model and is run with a single rank per node,

whereas LAMMPS is run MPI-parallel with 16 ranks per node. The Rhodopsin benchmark

stores 32k particles per simulation rank, resulting in each client rank receiving 512k particles

in the 16 : 1 configuration, which, after accounting for ghost zones, corresponds to roughly

Fig. 5.8: The LAMMPS Rhodopsin benchmark rendered with ambient occlusion. Left: the
simulation data on a single rank. Right: replicated in the weak scaling benchmark for 1024
ranks. By using the ghost particles already computed by LAMMPS, the in situ renderer is
able to compute ambient occlusion effects using only the local data available on each client
rank.

190

20MB of data per client. The additional ghost particles are used to compute ambient

occlusion to provide better depth cues (see Fig. 5.8). The benchmark renders an orbit of 80

camera positions around the data, and does so for 50 time steps. OSPRay’s asynchronous

rendering support is used to reduce the total time to render the set of by rendering

eight images in parallel (also see Section 5.1). The benchmark measures the total time

to render all 80 frames each time step in the shared and separate configurations using both

intercommunicators, with a 10242 image size (Fig. 5.9).

At low node counts, the difference observed in the total render time between the

MPI and socket intercommunicators is unexpectedly large. The different communicators

affect only data transfer performance, which is not timed in the rendering benchmark,

and thus should achieve similar rendering performance. At higher node counts, the MPI

and socket modes converge to similar render times, with the separate node configuration

achieving slightly better performance than the shared node one, as expected. The shared

node configuration runs both the simulation and renderer on the same nodes, and some

performance degradation of both is to be expected. On KNL, each configuration achieves

roughly similar performance, potentially due to the larger number of available cores for the

renderer, and the relatively weaker per-core performance compared to SKX. The overall

render time decreases in the benchmark as it is scaled up, which is a result of each client’s

local data projecting to a smaller region of the image as the data set is scaled up.

1 2 4 8 16 32 64 128
Client Nodes

0

5

10

15

20

25

Im
ag
e
D
at
ab
as
e
R
en
d
er
T
im
e
(s
)

Stampede2 MPI shared

Stampede2 MPI separate

Stampede2 Sockets shared

Stampede2 Sockets separate

(a) Stampede2 SKX.

1 2 4 8 16 32 64 128
Client Nodes

0

10

20

30

40

50

60

70

Im
ag
e
D
at
ab
as
e
R
en
d
er
T
im
e
(s
)

Stampede2 MPI shared

Stampede2 MPI separate

Stampede2 Sockets shared

Stampede2 Sockets separate

(b) Stampede2 KNL.

Fig. 5.9: Camera orbit render times on SKX and KNL for each time step. The image
database rendering task scales well, with the shared node configuration slightly impacted
by the simulation. A performance decrease is observed at 128 clients in the separate
configuration, which may be due to a different network placement for the 256 node job
impacting compositing performance.

191

1 2 4 8 16 32 64 128
Client Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
o
m
p
u
te
T
im
es
te
p
(s
)

No libIS
Stampede2 MPI Separate
Stampede2 Sockets Separate
Stampede2 MPI Shared
Stampede2 Sockets Shared

(a) Stampede2 SKX.

1 2 4 8 16 32 64 128
Client Nodes

0

2

4

6

8

C
o
m
p
u
te
T
im
es
te
p
(s
)

(b) Stampede2 KNL.

Fig. 5.10: The impact of the image database rendering client on LAMMPS performance.
Bars show the average time to compute each time step in the different modes, with standard
deviation shown as error bars. As expected, the shared node configuration significantly
impacts performance, whereas the separate node configuration has relatively little effect.
On 16 SKX nodes the LAMMPS simulation became unstable, and we were unable to run
benchmarks in that configuration. The plots share the same legend.

5.3.3.1.3 Impact on simulation performance. Fig. 5.10 displays the impact on simula-

tion performance for each configuration by comparing the time taken to compute each time

step with and without the mini-cinema client running. In the separate node configuration,

the simulation and client are run on distinct nodes, and do not contend for resources. Thus,

the simulation is impacted only by the time spent sending data to the clients. On the

Stampede2 SKX nodes, the simulation-oblivious approach has a negligible impact when

using MPI or sockets, although an outlier is encountered at 128 nodes where a larger impact

when using sockets is observed. On the KNLs, the simulation is 4% slower on average when

using MPI, with a similar impact observed for sockets, although an outlier is observed at 16

nodes where a greater impact when using sockets is measured. The greater impact on KNL

can be attributed to the lower single-core performance compared to SKX, which increases

the time spent transferring data to the clients.

The shared node configuration runs the simulation and client on the same nodes,

potentially leading to significant resource contention and impacting simulation performance.

On SKX, simulation takes 82% longer when using MPI and 104% longer when using sockets.

On KNL, the simulation takes 44% longer when using MPI and 44% longer when using

sockets. The reduced impact on KNL is likely attributable to the larger number of cores

available, which may reduce resource contention for processors, and the availability of

192

MCDRAM, which in this configuration is large enough to hold the data of both LAMMPS

and mini-cinema.

5.3.3.2 Direct Numerical Simulation of Turbulent Channel
Flow

The turbulent channel flow example uses Poongback [165–167, 186] to simulate a large-

scale turbulent channel fluid flow and the proposed simulation-oblivious data model to

transfer data to the mini-cinema clients as before. Poongback is a computational fluid

dynamics (CFD) solver for direct numerical simulation (DNS) of incompressible turbulent

channel flows written in Fortran. The simulation generates a 3D volume data set and

runs MPI-parallel. Poongback is written in Fortran, and integrates the in situ library

using the provided Fortran wrapper. Minimal modifications to the simulation code are

required to integrate in situ visualization through the library. First, before the Poongback

simulation begins, it initializes the in situ interface and configures the simulation state on

each rank with the bounds of its local volume data. After each time step, Poongback calls

the libISProcess Fortran wrapper to send the data on to any clients requesting the current

time step. Poongback stores its data row-major, and does not require a transpose to be done

after receiving data on the client.

5.3.3.2.4 Evaluation setup. As done for LAMMPS, the evaluation is performed by

transferring data from the simulation, Poongback, to the mini-cinema rendering client

for a number of time steps. The benchmark records the network utilization of the data

transfer, rendering performance of the client, and the impact on simulation performance.

The Poongback benchmarks are run on Stampede2 SKX and KNL nodes, using a weak

scaling benchmark for Poongback. To create the weak scaling benchmark, the simulation

dimensions are increased based on the number of clients, maintaining roughly 1.4GB of

volume data per client (Table 5.1). The simulation and clients are run in a 32 : 1 configuration.

Poongback is run MPI-parallel with 32 ranks per node, whereas the mini-cinema clients

are run using MPI + Threads with one rank per node. The benchmarks are run in both the

shared and separate configurations and use the MPI and socket intercommunicators. When

using the shared node configuration, the simulation and application are run on the same

nodes, whereas in the separate configuration half the nodes are assigned to the simulation

and half to the client. The benchmarks are run up to an aggregate of 128 SKX nodes and

193

Table 5.1: Weak scaling configurations for the Poongback benchmark, targeting roughly
1.4GB of volume data per client rank.

Client Ranks Total Voxels Total Volume Size (GB)

1 384×768×576 1
2 768×768×576 3
4 768×768×1152 5
8 1536×768×1152 11
16 1536×768×2304 22
32 3072×768×2304 43
64 3072×768×4608 87
128 6144×768×4608 174

256 KNL nodes. The shared node runs are scaled up from a 32 : 1 configuration up to

a 4096 : 128 one on SKX and KNL. The separate node runs are scaled up from a 32 : 1

configuration up to a 2048 : 64 one on SKX and a 4096 : 128 one on KNL.

5.3.3.2.5 Performance portability and scalability. Fig. 5.11 displays the average data

transfer bandwidth achieved on each client over 50 time steps. When using MPI in the

separate node configuration, data are transferred over the 100Gbps Omnipath network,

and the simulation-oblivious approach achieves an average of 20% network utilization on

SKX and 6% on KNL. When using sockets in the separate node configuration, data are

transferred over the 1Gbps ethernet network, and the approach achieves 90% network

utilization on SKX and 78% on KNL. As discussed previously, parallelizing the data transfer

within each set of simulation ranks and client could improve network utilization when

using MPI, especially for the larger aggregate data transfer performed for the Poongback

1 2 4 8 16 32 64 128
Client Nodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

B
an
d
w
id
th
p
er
-c
li
en
t
(G
b
p
s)

Stampede2 MPI shared
Stampede2 MPI separate
Stampede2 Sockets shared
Stampede2 Sockets separate

(a) Bandwidth per client on Stampede2 SKX.

1 2 4 8 16 32 64 128
Client Nodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

B
an
d
w
id
th
p
er
-c
li
en
t
(G
b
p
s) Stampede2 MPI shared

Stampede2 MPI separate
Stampede2 Sockets shared
Stampede2 Sockets separate

(b) Bandwidth per client on Stampede2 KNL.

Fig. 5.11: Bandwidth per client rank achieved in the Poongback weak scaling benchmark.
The independent communication strategy employed by simulation-oblivious data transfer
model achieves good weak scaling, and performs well when transferring the larger portion
of data sent by each Poongback rank.

194

simulation.

In the shared node configuration, each set of 32 : 1 ranks is run on the same node,

ensuring communication is local to each node. As a result, data can be transferred using

shared memory instead of over the network to achieve higher bandwidth. A notable

exception is on SKX (Fig. 5.11a), where higher bandwidth is achieved in the separate

configuration than in the shared one when using MPI. This result is counter to the results

observed on KNL with Poongback and on KNL and SKX with LAMMPS, and warrants

further investigation.

Overall, higher bandwidth is achieved on SKX than KNL, likely due to the higher per-

core performance of SKX. Similar to the results observed on LAMMPS in Section 5.3.3.1.1,

MPI achieves higher bandwidth than sockets, as MPI is able to leverage the faster Omnipath

network. However, in the shared configuration both can leverage shared memory and the

gap between the two narrows. In terms of overall weak scalability, the independent data

transfer strategy employed by the simulation-oblivious data transfer model scales well with

the number of clients, with per client bandwidth remaining nearly constant across each

scaling run.

5.3.3.2.6 In situ image database rendering. For each of the 50 time steps queried

during the benchmark, the mini-cinema client renders an 80-position camera orbit around

the data set (Fig. 5.12). Each image is rendered at a 10242 resolution, with one sample per

pixel and a volume sampling rate of one sample per voxel. In the largest run with 128 client

ranks, the application queries and renders a total of 8.7TB of volume data over the course of

the 50 time steps. The mini-cinema client is run with a single image in flight to reduce the

impact of the client in the shared node configuration, and in the same mode in the separate

configuration for consistency.

The time taken to render each camera orbit is shown in Fig. 5.13. In contrast to the

results observed with LAMMPS, the overall rendering time increases as additional client

ranks are added. The difference in rendering performance is likely due to the differing data

distributions of Poongback and LAMMPS. Compared to LAMMPS, where each simulation

rank has a cube of data, Poongback partitions its data using a pencil decomposition [166].

After multiple pencil-pencil data transposes, the set of regions assigned to each client is a

group of these x-pencils along the axis of flow, so that each pencil spans the entire x-axis

195

of the data set. The set of regions assigned to each client is a group of these x-pencils,

where each pencil spans the entire x axis of the data set. The set of regions projects to

a large number of pixels for most of the viewpoints in the orbit. The number of pixels

covered does not reduce significantly as more ranks are added, leading to a significant

amount of rendering and compositing work. One measure that could be taken to alleviate

the compositing work is to merge the 32 regions assigned to each client rank into a single

OSPRay rendering region, allowing them to be rendered and composited as a single brick,

instead of 32 separate ones. This optimization would reduce the compositing work by

a factor of 32, allow for faster local rendering, and provide a meaningful performance

improvement.

Fig. 5.12: Images of the Poongback turbulent channel-flow simulation rendered using the
mini-cinema visualization client. Both volumes are 6144× 768× 4608 voxels in double-
precision floating-point values (174GB). Left: The simulation state at time step 0, the initial
condition used in the weak scaling benchmarks. Right: A checkpoint of the same simulation
(fully developed turbulence).

1 2 4 8 16 32 64 128
Client Nodes

0

10

20

30

40

50

Im
ag
e
D
at
ab
as
e
R
en
d
er
T
im
e
(s
) Stampede2 MPI separate

Stampede2 MPI shared

Stampede2 Sockets separate

Stampede2 Sockets shared

(a) Stampede2 SKX.

1 2 4 8 16 32 64 128
Client Nodes

0

20

40

60

80

100

120

140

Im
ag
e
D
at
ab
as
e
R
en
d
er
T
im
e
(s
)

Stampede2 MPI shared
Stampede2 MPI separate
Stampede2 Sockets shared
Stampede2 Sockets separate

(b) Stampede2 KNL.

Fig. 5.13: Camera orbit render times on SKX and KNL for each time step in the weak scaling
benchmark. Better overall rendering performance is achieved on SKX, and in the separate
node configurations, as the shared node configuration oversubscribes the nodes. In contrast
to the LAMMPS results, the renderer does not scale as well to higher node counts, potentially
due to the differences in data distribution of Poongback and the resulting differences in the
compositing workload.

196

We find similar results as those observed with LAMMPS when comparing the relative

rendering performance of the different configurations and communicators. Although we

find little impact of the communication method used (MPI vs. sockets) on render time, we

find a significant impact on performance when using the shared configuration. The shared

configuration can lead to contention between the simulation and client, and impacts the

performance of both.

5.3.3.2.7 Impact on simulation performance. Fig. 5.14 shows the impact of running

the mini-cinema client in different configurations on simulation performance. The impact

incurred by the data transfer is primarily determined by the ratio of compute time and

data transfer time for each time step. Depending on how large this ratio is, the simulation

becomes either compute bound or communication bound. Thus, the impact on simulation

time is related to the network performance measured in Section 5.3.3.2.5. The standard

deviation of the overhead is much higher when using the sockets intercommunicator in the

separate node configuration, which is likely attributable to varying network performance

when using sockets. MPI and local sockets are able to achieve higher bandwidth with

greater consistency to transfer the data faster and reduce impact on the simulation. When

not rendering multiple frames in parallel, the rendering client has little impact on the

simulation in the shared configuration, as can be seen by comparing the performance

impact of the shared modes on Poongback and LAMMPS, where the client was configured

1 2 4 8 16 32 64 128
Client Nodes

0

5

10

15

20

25

C
o
m
p
u
te
T
im
es
te
p
(s
)

No libIS
Stampede2 MPI Separate
Stampede2 Sockets Separate
Stampede2 MPI Shared
Stampede2 Sockets Shared

(a) Stampede2 SKX.

1 2 4 8 16 32 64 128
Client Nodes

0

5

10

15

20

25

C
o
m
p
u
te
T
im
es
te
p
(s
)

No libIS
Stampede2 MPI Separate
Stampede2 Sockets Separate
Stampede2 MPI Shared
Stampede2 Sockets Shared

(b) Stampede2 KNL.

Fig. 5.14: The impact of the image database rendering client on Poongback performance.
Bars show the average time to compute each time step in the different modes, with standard
deviation shown as error bars. Overall, the time-consuming socket-based communication
in the separate configuration incurs the most overhead. By not rendering multiple frames
in parallel, the renderer’s impact on the simulation is reduced in the shared configurations.

197

to render multiple frames in parallel.

When using the socket communicator in the separate mode, the simulation becomes

communication bound, and must wait for the data transfer to complete before advancing,

thereby impacting performance. The sockets separate configuration has the greatest impact

on simulation performance of the different modes, increasing compute time by 78% on

SKX and 34% on KNL. The impact is greater on SKX as faster nodes lead to a 1.7× faster

simulation, exacerbating the impact of the simulation becoming bound by the data transfer.

In the other configurations, the impact is less severe. The MPI separate mode increases

simulation time by 4% and 6%, on SKX and KNL, respectively; the MPI shared mode by

18% and 14%; and the sockets shared mode by 22% and 17%.

5.3.3.3 Data Transfer Performance of Restructuring and
Simulation-Oblivious Approaches

To measure the performance impact of restructuring the data during transfer, this section

compares the data transfer performance of the proposed restructuring and simulation-

oblivious approaches with each other and the restructuring technique used in ADIOS2 [94,

177]. Whereas the presented restructuring technique is based on a spatial decomposition,

ADIOS treats the particle attributes as 1D arrays without spatial information. When using

ADIOS, the particle distribution on each visualization client will be more similar to the

simulation-oblivious approach, which also does not consider the spatial distribution of the

data. ADIOS does support spatially driven restructuring for 2D or 3D grid data.

ADIOS repurposes its existing I/O API to support in situ visualization, allowing users

to simply change the I/O “engine” being used by the simulation and visualization. ADIOS

adopts a lightweight data model, processing 1D, 2D, or 3D arrays of primitive types that

are passed to the I/O engine. ADIOS supports restructuring the data during transfer by

providing an interface similar to reading subregions of a shared file. Each client specifies

a starting offset within an array and number of elements to be read, as if reading a file.

ADIOS will then make the requested data available on that rank. Although this “file-based”

API allows for a transparent transition from a post hoc visualization pipeline, it requires

some form of data restructuring to be performed in an in situ scenario, potentially adding

overhead to the data transfer.

The replicated LAMMPS Lennard Jones benchmark used in Section 5.3.3.1.1 is used to

198

compare the bandwidth achieved by each method. The benchmark generates 131k particles

on each simulation rank and is run in a 16 : 1 configuration of the simulation and client,

as used in Section 5.3.3.1.1. Each particle attribute (x, y, z, type) is passed to ADIOS as a

1D global array. Clients request the subregion of this array corresponding to their assigned

set of simulation ranks, using an assignment similar to the proposed simulation-oblivious

approach. The ADIOS benchmarks use the “SST” data transfer engine, which supports

M : N data transfer and will make use of RDMA enabled networks where available.

In both the shared and separate configurations, ADIOS achieves similar data transfer

speeds, averaging 0.5Gbps per client on SKX and KNL when run with 16 clients on

Stampede2 (a 256 : 16 configuration). The proposed spatially aware data restructuring

method achieves poorer performance, achieving just 0.2Gbps in the shared configuration

and 0.09Gbps in the separate configuration. In contrast, the proposed simulation-oblivious

approach averages 13Gbps and 11Gbps, respectively on SKX, and 5Gbps and 1.5Gbps,

respectively on KNL (see Fig. 5.7). The potential need for more global communication

among ranks to perform data redistribution comes at a cost compared to the independent

model used in the simulation-oblivious approach, though is convenient for applications.

Furthermore, the global, serial data query process and the acceleration structure-less

approach to performing spatial queries in the spatially aware data restructuring approach

(Section 5.3.1) comes with a significant performance impact.

5.4 Summary

The need for scalable in situ visualization continues to grow as simulations increase

in scale, requiring new scalable solutions for existing in situ use cases and new flexible,

low-overhead techniques to minimize the impact of the visualization on the simulation.

This chapter has presented work to enable scalable in situ visualization across tightly and

loosely coupled configurations. Rendering is a common task required in visualization,

and thus in situ visualization. The Distributed FrameBuffer [281] can also be used in

situ to provide scalable high-quality rendering, as demonstrated through a Cinema-style

mini-app. Ongoing work to integrate data staging based in situ visualization methods

within the adaptive, spatially aware two-phase I/O pipeline can transparently provide in

situ visualization to simulations using the I/O strategy, while also providing a number of

199

benefits over existing approaches. Finally, two data transfer methods were proposed to

enable low memory or compute overhead loosely coupled in situ visualization.

The Distributed FrameBuffer [281] provides a compelling option to enable flexible,

scalable, and high-quality in situ visualization in tightly and loosely coupled use cases.

The core scalable rendering component provided by the DFB is applicable to accelerate

a broad range of in situ rendering applications, from static images or movies to massive

image databases or interactive rendering. Morever, the flexibility provided by the DFB with

regard to the data distribution is especially useful to support a wide range of simulations.

Applications with more complex data layouts, which standard compositing libraries may

not be able to render in place, can be virtually partitioned using regions to allow rendering

them in place. Loosely coupled applications can also leverage hybrid-parallel rendering for

load balancing to improve performance.

Passing data from the simulation to in situ visualization tasks follows a similar model

as passing data to an I/O library for output. This similarity has made the I/O library a

popular path to integrate in situ visualization, because it can be done without modifying

the simulation code. A number of approaches using this model to enable tightly coupled,

data staging, and loosely coupled in situ visualization have been proposed and effectively

demonstrated [17, 63, 68, 94, 177, 284, 326, 327]. Compared to existing approaches, which are

either not spatially aware or not adaptive, integrating in situ visualization into the spatially

aware two-phase I/O pipeline proposed in this work provides a number of benefits. The

in situ visualization tasks run on each aggregator are provided a spatially coherent and

load balanced data distribution via the I/O pipeline, leading to improved performance for

visualization tasks. Moreover, tasks run on the aggregators can use the BAT data layout to

accelerate local and remote data access.

Finally, this chapter proposed two models for low-overhead data transfer for loosely

coupled and on-demand in situ visualization. In situ visualization using these data transfer

models can be run on the same nodes as the simulation, different nodes, or an entirely

different HPC resource, as desired. The proposed spatially aware data restructuring

approach for particle data treats the simulation as a data server that visualization tasks

can make spatial queries to. However, performing this spatial data restructuring comes

at significant cost. The proposed simulation-oblivious approach does not restructure the

200

data during transfer, instead providing each visualization rank a set of simulation states to

process. By skipping restructuring, the simulation-oblivious approach can quickly transfer

data to the visualization clients to minimize the time the simulation must spend performing

data transfers. As the simulation-oblivious approach does not inspect the data, it can also

be easily integrated into simulations that use custom mesh or data layouts and specially

tailored visualization pipelines. Moreover, the simulation-oblivious approach does not

preclude the use of data restructuring after the data have been transferred to provide a

better data distribution to visualization tasks. This restructuring could be performed using

a similar adaptive and spatially aware approach as employed in the adaptive, spatially

aware two-phase I/O pipeline.

CHAPTER 6

CONCLUSION AND FUTURE WORK

The continuing growth in computing power available on HPC systems has enabled

increasingly higher fidelity simulations, which in turn produce ever increasing amounts

of data. This large volume of output data poses a challenge to existing strategies for I/O

and visualization that are required to gain scientific insight from such massive simulations.

This dissertation proposes methods to address key challenges arising in the simulation

visualization pipeline when faced with this massive volume of data, laying the groundwork

for an efficient end-to-end simulation visualization pipeline. To address these challenges,

this dissertation adopts a holistic view of the simulation visualization pipeline and proposes

work spanning it, from I/O and data layout to post hoc and in situ visualization. At

a high level, the proposed methods address these challenges by adopting adaptive and

multiresolution processing throughout the simulation visualization pipeline.

The growing size of data computed by simulations requires scalable, high throughput

I/O strategies that can quickly output the data so that the simulation can advance to the

next time step. However, as discussed in this dissertation, it is not sufficient to output

just a raw dump of the data, as the raw data dump will likely not provide efficient read

access for post hoc visualization tasks. Chapter 3 proposes new strategies for spatially

aware adaptive aggregation of particle data for scalable I/O, along with a low-overhead,

visualization-focused data layout for particle data that can be constructed quickly during

I/O. The proposed I/O strategies and data layout work together to quickly output massive

particle data sets directly in a visualization-focused data layout, eliminating the need for

a postprocess data conversion, without sacrificing I/O performance or portability. The

aggregation tree adaptive I/O strategy proposed in this work is able to improve I/O

performance by up to 2.5× on nonuniform particle distributions, by adjusting how ranks

are grouped together during two-phase I/O to improve load balance. The proposed BAT

202

data layout supports progressive multiresolution reads with spatial and attribute filtering

with little memory overhead, and is specifically designed to enable fast parallel construction

during the I/O pipeline.

Post hoc visualization tasks face a range of challenges when faced with visualizing

massive data sets. On one hand, scalable distributed rendering methods are needed to

render the full-resolution data on HPC systems, whereas other methods are needed to

enable visualization in immersive VR environments and other computationally constrained

environments, such as the browser, to improve accessibility. Chapter 4 presents work

on post hoc visualization methods that adopt adaptive and multiresolution computation

and data layouts to enable visualization of massive data sets across HPC systems, VR,

and the web browser. These works are key to enable scientists to gain insight from the

massive data sets output by current and upcoming simulations. The DFB enables scalable

full-resolution rendering of massive data on HPC systems through a flexible tile-based

image processing pipeline. The DFB enables scalable image-, data-, and hybrid-parallel

rendering within the same compositing framework to support a wide variety of distributed

renderers. A VR neuron tracing tool, VRNT, was proposed to enable immersive exploration

of large data sets in VR. VRNT is built on a multiresolution data layout and on-demand

page-based processing system to ensure a high-quality VR experience for neuroanatomists.

The intuitive and direct interaction provided by VRNT was found to improve neuron tracing

performance and understanding through a pilot study conducted with neuronatomists

from the Angelucci lab. Neuroanatomists are able to use the tool comfortably for long

periods on large data sets as a result of VRNT’s on-demand page-based processing system,

which ensures the tool meets the high rendering demands of VR. Finally, a new GPU-driven

isosurface extraction algorithm for block-compressed volumes, BCMC, was proposed to

enable interactive visualization of massive data sets in constrained environments. BCMC

significantly reduces the memory required to isosurface massive volumes by decompress-

ing and caching blocks as needed through a GPU-driven LRU cache, and performs all

computation on the GPU to accelerate isosurface extraction. BCMC enables interactive

isosurface extraction on massive volumes in constrained environments, such as the web

browser, improving access to visualization of massive scientific data sets.

In situ visualization methods face similar challenges as post hoc methods with respect

203

to rendering scalability and similar challenges as parallel I/O with respect to load balancing

and data layout. In situ visualization is also faced with its own unique challenges. This

dissertation focuses on the need to minimize the impact of the visualization on the simu-

lation, a key concern for large-scale simulations. Chapter 5 demonstrates how the work

proposed in this dissertation on scalable post hoc visualization, adaptive load balancing for

I/O, and data layouts can be applied to in situ visualization. In situ rendering of massive

data at scale is a challenging problem, and is made even more challenging when a large

number of images must be rendered, e.g., as needed for explorable extracts methods. The

scalable rendering provided by the DFB for post hoc visualization is equally applicable to

accelerate in situ rendering, as demonstrated in this chapter. The adaptive spatially aware

I/O pipeline proposed in this dissertation can also be used as a data staging in situ execution

environment, by running the in situ visualization on the aggregators. In situ visualization

run in this manner can take advantage of the load balancing provided by the aggregation

tree and use the BAT data layout to accelerate local and remote data queries. Moreover,

Chapter 5 presents new low-overhead strategies for loosely coupled in situ visualization that

minimize the impact of the visualization on the simulation. The new data transfer strategies

presented provide significant flexibility to allow running the simulation and visualization in

their ideal configurations, supporting M : N configurations, asynchronous and on-demand

execution, and flexible placement of the visualization processes. Although the spatially

aware approach discussed incurs a high computational cost during data transfer, the

simulation-oblivious approach does not, minimizing the impact of the visualization on the

simulation. The simulation-oblivious approach achieves high bandwidth data transfers to

the visualization clients, which are then free to adjust the data distribution as desired.

6.1 Exciting Avenues for Future Research

Although this dissertation has laid the groundwork for an efficient end to end simulation

visualization pipeline, much work remains to be done within this broad effort to enable

science at exascale.

Chapter 3 presented new strategies for adaptive spatially aware I/O and low-overhead

visualization-focused data layouts. Although the improved load balancing provided by

the aggregation tree achieves a significant improvement in I/O performance, it does not

204

consider partitioning the data within a rank, limiting the granularity of load balancing that

can be achieved. However, it is also not feasible to aggregate the entire data set to a single

rank to construct a perfectly balanced aggregation strategy. To construct a more balanced

aggregation strategy, it may be possible to subdivide ranks with large amounts of data

into “virtual” ranks before constructing the aggregation tree, or to exchange some form

of reduced representation of the data distribution on each rank. With regard to the BAT

data layout, the assumption of spatial coherence in the attributes is a main limitation of

the low-overhead attribute filtering approach. If some attributes are not spatially coherent,

the bitmaps in the tree will be less useful, impacting query filtering performance. This

limitation could potentially be addressed by adopting more advanced binning schemes [313]

or additional hierarchies on these attributes. Better and more consistent error improvement

for attributes could be provided through a more advanced LOD sampling scheme, e.g.,

using the bitmaps [267]. Such an approach would allow the layout to provide stronger

quality vs. error guarantees to users. However, building a layout that provides strong

quality guarantees can be computationally expensive, and could in turn degrade I/O

performance.

A key limitation of compositing-based rendering algorithms, such as the data- and

hybrid-parallel renderers built on the DFB in Section 4.1, is that they do not support global

illumination effects that require data from different nodes. Local lighting effects such as

ambient occlusion can be achieved by duplicating subsets of the data to provide ghost zones;

however, shadows or full path tracing on the distributed data are not possible without a

more advanced distributed rendering system. Recent work [1, 133, 201, 212, 262, 269] has

begun investigating approaches based on moving rays or data, or both, to enable secondary

effects, an effort that dates back to early work by Reinhard et al. [234]. However, the

cost of moving data or rays over the network is high, and such approaches are typically

noninteractive. Investigating strategies for high-performance secondary ray effects on

distributed data is a challenging area of research, and would enable high-fidelity imagery for

distributed rendering and in situ visualization. Such strategies would also have applications

in production film rendering, where scene sizes have been growing rapidly.

Improving access to interactive visualization of massive data sets remains an ongoing

challenge as simulation sizes grow or new visualization platforms are introduced. New

205

consumer VR systems based on self-contained head-mounted displays, such as the Oculus

Quest 2 [204], reduce the barrier to entry for VR and provide an easily accessible immersive

environment for visualization. However, even though the HMD is driven by what amounts

to a high-end mobile phone, the framerate and resolution demands to provide a comfortable

and immersive VR experience are no less strict. Enabling visualization of massive data

sets in such a computationally constrained yet demanding environment requires new

visualization techniques that adopt adaptive and multiresolution processing throughout

all aspects of the visualization pipeline, from computation to rendering. Moreover, such

techniques will need to adopt incremental strategies for updating data and performing

computation to avoid dropping frames, as done in VRNT. Similar challenges are faced when

considering additional techniques for visualizing massive data in the browser. For example,

BCMC is built around exploiting the sparsity of typical isosurfaces to reduce the amount

data that must be decompressed; however, this is less applicable to volume rendering,

where the entire data set can be semitransparent and thus must be processed. Visualization

algorithms that can work directly on variable resolution and precision data layouts, such

as the layout proposed by Hoang et al. [120], should be explored to enable massive data

visualization in these constrained environments and even on high-end workstations.

It would also be worthwhile to investigate methods for automatic tuning and placement

of in situ visualization tasks. Rather than relying on the scientist or visualization developer

to decide where and how to run the tasks, a runtime system used by both the simulation

and visualization could make such a decision based on the data access patterns of the

visualization and its estimated or measured execution time. The runtime system could

then execute the visualization in a tightly coupled, data staging, or loosely coupled config-

uration, as appropriate to improve overall performance. Integrating in situ visualization

aware scheduling into the asynchronous many-task runtime systems used by simulations

could provide better overall performance and portability, easing the adoption of in situ

visualization in practice.

REFERENCES

[1] G. Abram, P. Navrátil, P. Grosset, D. Rogers, and J. Ahrens, “Galaxy: Asynchronous
ray tracing for large high-fidelity visualization,” in Proc. 2018 IEEE Symp. Large Data
Anal. and Vis., 2018, pp. 72–76.

[2] L. Acciai, P. Soda, and G. Iannello, “Automated neuron tracing methods: An updated
account,” Neuroinformatics, vol. 14, no. 4, pp. 353–367, 2016.

[3] M. Aftosmis, M. Berger, and G. Adomavicius, A parallel multilevel method for adaptively
refined Cartesian grids with embedded boundaries. Reno, NV, United States: Amer. Inst.
of Aeronaut. & Astronaut., 2000.

[4] M. Agus, D. Boges, N. Gagnon, P. J. Magistretti, M. Hadwiger, and C. Calí, “GLAM:
Glycogen-derived lactate absorption map for visual analysis of dense and sparse
surface reconstructions of rodent brain structures on desktop systems and virtual
environments,” Comput. & Graph., vol. 74, pp. 85–98, 2018.

[5] S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow, S. Klasky, V. Pascucci,
J. Ahrens, E. W. Bethel, H. Childs, J. Huang, K. Joy, Q. Koziol, G. Lofstead, J. S.
Meredith, K. Moreland, G. Ostrouchov, M. Papka, V. Vishwanath, M. Wolf, N. Wright,
and K. Wu, “Scientific discovery at the exascale, a report from the DOE ASCR 2011
workshop on exascale data management, analysis, and visualization,” Dept. of Energy
Office of Advanced Scientific Computing Research, Washington, DC, United States,
Tech. Rep. 1372701, 2011.

[6] J. Ahrens, B. Geveci, and C. Law, “ParaView: An end-user tool for large-data
visualization,” in Vis. Handbook, C. D. Hansen and C. R. Johnson, Eds. Burlington,
VT: Butterworth-Heinemann, 2005, pp. 717–731.

[7] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Petersen, “An
image-based approach to extreme scale in situ visualization and analysis,” in SC ’14:
Proc. Int. Conf. for High Perform. Comput., Networking, Storage and Anal. IEEE Press,
2014, pp. 424–434.

[8] A. Alsegård, “Interactive out-of-core rendering and filtering of one billion stars
measured by the ESA gaia mission,” M.S. Thesis, Dept. of Science and Technology,
Media and Information Technology, Linköping Univ., Linköping, 2018.

[9] N. Apthorpe, A. Riordan, R. Aguilar, J. Homann, Y. Gu, D. Tank, and H. S. Seung,
“Automatic neuron detection in calcium imaging data using convolutional networks,”
in Advances in Neural Inf. Process. Syst. 29, 2016.

[10] U. Ayachit, A. Bauer, E. P. Duque, G. Eisenhauer, N. Ferrier, J. Gu, K. E. Jansen,
B. Loring, Z. Lukic, S. Menon et al., “Performance analysis, design considerations,

207

and applications of extreme-scale in situ infrastructures,” in SC ’16: Proc. Int. Conf. for
High Perform. Comput., Networking, Storage and Anal., 2016, pp. 921–932.

[11] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K. Moreland,
P. O’Leary, V. Vishwanath, B. Whitlock, and E. W. Bethel, “In situ methods, infrastruc-
tures, and applications on high performance computing platforms,” Comput. Graph.
Forum, vol. 35, no. 3, pp. 577–597, 2016.

[12] A. C. Bauer, B. Geveci, and W. Schroeder, The ParaView Catalyst User’s Guide v2.0.
Clifton Park, NY: Kitware, 2015.

[13] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing locality
and independence with logical regions,” in Proc. Int. Conf. High Perform. Comput.,
Networking, Storage and Anal., 2012, p. 11.

[14] R. Bayer and E. McCreight, “Organization and maintenance of large ordered indexes,”
in Proc. 1970 ACM SIGFIDET (Now SIGMOD) Workshop Data Description, Access and
Control, 1970, pp. 107–141.

[15] N. Bell, J. Hoberock, and C. Rodrigues, “THRUST: A productivity-oriented library
for CUDA,” in Program. Massively Parallel Processors, D. B. Kirk and W.-m. W. Hwu,
Eds. Burlington, MA: Morgan Kaufmann, 2017, pp. 475–491.

[16] J. Bennett, R. Clay, G. Baker, M. Gamell, D. Hollman, S. Knight, H. Kolla, G. Sjaardema,
N. Slattengren, K. Teranishi et al., “ASC ATDM level 2 milestone# 5325: Asynchronous
many-task runtime system analysis and assessment for next generation platforms,”
Sandia National Laboratory, Albuquerque, NM, United States, Tech. Rep. SAND-
2015-8312, 2015.

[17] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin, S. Klasky, H. Kolla,
M. Parashar, and V. Pascucci, “Combining in-situ and in-transit processing to enable
extreme-scale scientific analysis,” in SC ’12: Proc. Int. Conf. High Perform. Comput.,
Networking, Storage and Anal., 2012, pp. 1–9.

[18] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[19] M. J. Berger and P. Colella, “Local adaptive mesh refinement for shock hydrodynam-
ics,” J. Comput. Phys., vol. 82, no. 1, pp. 64–84, 1989.

[20] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differen-
tial equations,” J. Comput. Phys., vol. 53, no. 3, Mar 1984.

[21] M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey, Q. Meng, J. Schmidt,
and C. Wight, “Extending the Uintah framework through the petascale modeling of
detonation in arrays of high explosive devices,” SIAM J. Scientific Comput., vol. 38,
no. 5, pp. S101–S122, 2016.

[22] J. Beyer, M. Hadwiger, and H. Pfister, “State-of-the-art in GPU-based large-scale
volume visualization,” Comput. Graph. Forum, vol. 34, no. 8, pp. 13–37, 2015.

[23] T. Biedert and C. Garth, “Contour tree depth images for large data visualization,” in
Proc. Eurographics Symp. Parallel Graph. and Vis., 2015, p. 10.

208

[24] T. Biedert, P. Messmer, T. Fogal, and C. Garth, “Hardware-accelerated multi-tile
streaming for realtime remote visualization,” in Proc. Eurographics Symp. Parallel
Graph. and Vis., 2018.

[25] T. Biedert, K. Werner, B. Hentschel, and C. Garth, “A task-based parallel rendering
component for large-scale visualization applications,” in Proc. Eurographics Symp.
Parallel Graph. and Vis. The Eurographics Association, 2017, p. 9.

[26] J. Bigler, A. Stephens, and S. G. Parker, “Design for parallel interactive ray tracing
systems,” in Proc. 2006 IEEE Symp. Interactive Ray Tracing, 2006, pp. 187–196.

[27] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani, “Parallel data analysis directly
on scientific file formats,” in Proc. 2014 ACM SIGMOD Int. Conf. Manage. Data, 2014,
pp. 385–396.

[28] G. E. Blelloch, Vector Models for Data-Parallel Computing. Cambridge, MA: MIT Press,
1990.

[29] D. D. Bock, W.-C. A. Lee, A. M. Kerlin, M. L. Andermann, G. Hood, A. W. Wetzel,
S. Yurgenson, E. R. Soucy, H. S. Kim, and R. C. Reid, “Network anatomy and in vivo
physiology of visual cortical neurons,” Nature, vol. 471, no. 7337, pp. 177–182, 2011.

[30] D. Boges, M. Agus, R. Sicat, P. J. Magistretti, M. Hadwiger, and C. Calì, “Virtual reality
framework for editing and exploring medial axis representations of nanometric scale
neural structures,” Comput. & Graph., vol. 91, pp. 12–24, 2020.

[31] D. Boges, C. Calì, P. J. Magistretti, M. Hadwiger, R. Sicat, and M. Agus, “Immersive
environment for creating, proofreading, and exploring skeletons of nanometric scale
neural structures,” in Proc. Smart Tools and Apps for Graph. - Eurographics Italian Chapter
Conf. The Eurographics Association, 2019, p. 10.

[32] S. Boorboor, S. Jadhav, M. Ananth, D. Talmage, L. Role, and A. Kaufman, “Visualiza-
tion of neuronal structures in wide-field microscopy brain images,” IEEE Trans. Vis.
and Comput. Graph., vol. 25, no. 1, pp. 1018–1028, 2019.

[33] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,” IEEE Trans. Vis.
and Comput. Graph., vol. 17, no. 12, pp. 2301–2309, 2011.

[34] A. Bria, G. Iannello, and H. Peng, “An open-source Vaa3D plugin for real-time 3D
visualization of terabyte-sized volumetric images,” in Proc. Biomed. Imag. (ISBI), 2015
IEEE 12th Int. Symp. IEEE, 2015, pp. 520–523.

[35] K. L. Briggman, M. Helmstaedter, and W. Denk, “Wiring specificity in the direction-
selectivity circuit of the retina,” Nature, vol. 471, no. 7337, pp. 183–188, 2011.

[36] C. Brownlee, J. Patchett, L.-T. Lo, D. DeMarle, C. Mitchell, J. Ahrens, and C. Hansen,
“A study of ray tracing large-scale scientific data in parallel visualization applications,”
in Proc. Eurographics Symp. Parallel Graph. and Vis., 2012, p. 10.

[37] H. Bui, H. Finkel, V. Vishwanath, S. Habib, K. Heitmann, J. Leigh, M. Papka, and
K. Harms, “Scalable parallel I/O on a blue gene/Q supercomputer using compression,
topology-aware data aggregation, and subfiling,” in Proc. 2014 22nd Euromicro Int.
Conf. Parallel, Distrib., and Network-Based Process., 2014, pp. 107–111.

209

[38] C. Burstedde, L. C. Wilcox, and O. Ghattas, “P4est : Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees,” SIAM J. Scientific Comput., vol. 33,
no. 3, pp. 1103–1133, 2011.

[39] S. Byna, M. Chaarawi, Q. Koziol, J. Mainzer, and F. Willmore, “Tuning HDF5 subfiling
performance on parallel file systems,” in Proc. Cray User Group, 2017, p. 9.

[40] S. Byna, J. Chou, O. Rubel, H. Karimabadi, W. S. Daughter, V. Roytershteyn, E. W.
Bethel, M. Howison, K.-J. Hsu, K.-W. Lin et al., “Parallel I/O, analysis, and visualiza-
tion of a trillion particle simulation,” in SC ’12: Proc. Int. Conf. High Perform. Comput.,
Networking, Storage and Anal. IEEE, 2012, pp. 1–12.

[41] S. Byna, A. Uselton, and D. Knaak, “Trillion particles, 120,000 cores, and 350 TBs:
Lessons learned from a hero I/O run on hopper,” in Proc. Cray User Group, 2013, p. 9.

[42] C.-Y. Chan and Y. E. Ioannidis, “Bitmap index design and evaluation,” SIGMOD Rec.,
vol. 27, no. 2, pp. 355–366, 1998.

[43] ——, “An efficient bitmap encoding scheme for selection queries,” SIGMOD Rec.,
vol. 28, no. 2, pp. 215–226, 1999.

[44] D. Chen, N. Eisley, P. Heidelberger, S. Kumar, A. Mamidala, F. Petrini, R. Senger,
Y. Sugawara, R. Walkup, B. Steinmacher-Burow, A. Choudhury, Y. Sabharwal,
S. Singhal, and J. J. Parker, “Looking under the hood of the IBM blue gene/Q network,”
in Proc. Int. Conf. High Perform. Comput., Networking, Storage and Anal., ser. SC ’12,
2012.

[45] H. Childs, S. D. Ahern, J. Ahrens, A. C. Bauer, J. Bennett, E. W. Bethel, P.-T. Bremer,
E. Brugger, J. Cottam, M. Dorier, S. Dutta, J. M. Favre, T. Fogal, S. Frey, C. Garth,
B. Geveci, W. F. Godoy, C. D. Hansen, C. Harrison, B. Hentschel, J. Insley, C. R.
Johnson, S. Klasky, A. Knoll, J. Kress, M. Larsen, J. Lofstead, K.-L. Ma, P. Malakar,
J. Meredith, K. Moreland, P. Navrátil, P. O’Leary, M. Parashar, V. Pascucci, J. Patchett,
T. Peterka, S. Petruzza, N. Podhorszki, D. Pugmire, M. Rasquin, S. Rizzi, D. H. Rogers,
S. Sane, F. Sauer, R. Sisneros, H.-W. Shen, W. Usher, R. Vickery, V. Vishwanath, I. Wald,
R. Wang, G. H. Weber, B. Whitlock, M. Wolf, H. Yu, and S. B. Ziegeler, “A terminology
for in situ visualization and analysis systems,” The Int. J. High Perform. Comput. Appl.,
vol. 34, no. 6, pp. 676–691, 2020.

[46] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas,
M. Miller, G. H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. W. Bethel,
D. Camp, O. Ruebel, M. Durant, J. Favre, and P. Navrátil, “VisIt: An end-user tool for
visualizing and analyzing very large data,” Lawrence Berkeley National Laboratory,
Berkeley, CA, United States, Tech. Rep., 2012.

[47] H. Childs, K.-L. Ma, H. Yu, B. Whitlock, J. Meredith, J. Favre, S. Klasky, N. Podhorszki,
K. Schwan, and M. Wolf, “In situ processing,” Lawrence Berkeley National Laboratory,
Berkeley, CA, United States, Tech. Rep., 2012.

[48] J. Chou, K. Wu, and Prabhat, “FastQuery: A parallel indexing system for scientific
data,” in Proc. 2011 IEEE Int. Conf. Cluster Comput. IEEE, 2011, pp. 455–464.

210

[49] J. Chou, K. Wu, O. Rubel, M. Howison, J. Qiang, B. Austin, E. W. Bethel, R. D. Ryne,
and A. Shoshani, “Parallel index and query for large scale data analysis,” in Proc.
2011 Int. Conf. for High Perform. Comput., Networking, Storage and Anal. IEEE, 2011,
pp. 1–11.

[50] K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson,
J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin et al., “Structural and
molecular interrogation of intact biological systems,” Nature, vol. 497, no. 7449, pp.
332–337, 2013.

[51] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, “Optimal isosurface extraction
from irregular volume data,” in Proc. 1996 Symp. Volume Vis. IEEE Press, 1996, pp.
31–38.

[52] M. Ciżnicki, M. Kierzynka, K. Kurowski, B. Ludwiczak, K. Napierała, and J. Pal-
czyński, “Efficient isosurface extraction using marching tetrahedra and histogram
pyramids on multiple GPUs,” in Proc. Parallel Process. and Appl. Math., 2012.

[53] P. Coffman, F. Tessier, P. Malakar, and G. Brown, “Parallel I/O on theta with best
practices,” Talk at ALCF Simulation, Data, and Learning Workshop, 2018.

[54] R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A. Mirin, Y. Zhou, D. H.
Porter, and P. R. Woodward, “Three-dimensional simulation of a Richtmyer-Meshkov
instability with a two-scale initial perturbation,” Phys. Fluids, vol. 4, no. 10, pp.
3692–3709, 2002.

[55] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini, and
B. Van Straalen, “Chombo software package for AMR applications design document,”
Lawrence Berkeley National Lab, Berkeley, CA, United States, Tech. Rep., 2000.

[56] A. W. Cook, W. Cabot, and P. L. Miller, “The mixing transition in Rayleigh–Taylor
instability,” J. Fluid Mechanics, vol. 511, pp. 333–362, 2004.

[57] C. Crassin, F. Neyret, and S. Lefebvre, “Interactive gigavoxels,” INRIA, Le Chesnay-
Rocquencourt, France, Research Report RR-6567, 2008.

[58] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels: Ray-guided
streaming for efficient and detailed voxel rendering,” in Proc. 2009 Symp. Interactive
3D Graph. and Games. ACM, 2009, pp. 15–22.

[59] C. Cruz-Neira, J. Leigh, M. Papka, C. Barnes, S. M. Cohen, S. Das, R. Engelmann,
R. Hudson, T. Roy, L. Siegel et al., “Scientists in wonderland: A report on visualization
applications in the CAVE virtual reality environment,” in Proc. 1993 IEEE Res.
Properties in Virtual Reality Symp. IEEE, 1993, pp. 59–66.

[60] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart, “The CAVE:
Audio visual experience automatic virtual environment,” Commun. ACM, vol. 35,
no. 6, pp. 64–72, 1992.

[61] “NVIDIA: CUDA marching cubes example.” [Online]. Available: https://docs.
nvidia.com/cuda/cuda-samples/index.html

211

[62] C. Dachsbacher, C. Vogelgsang, and M. Stamminger, “Sequential point trees,” ACM
Trans. Graph., vol. 22, no. 3, pp. 657–662, 2003.

[63] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang, H. Abbasi,
S. Klasky, and N. Podhorszki, “Flexpath: Type-based publish/subscribe system for
large-scale science analytics,” in Proc. 2014 14th IEEE/ACM Int. Symp. Cluster, Cloud
and Grid Comput. IEEE, 2014, pp. 246–255.

[64] J. M. del Rosario, R. Bordawekar, and A. Choudhary, “Improved parallel I/O via a
two-phase run-time access strategy,” SIGARCH Comput. Archit. News, vol. 21, no. 5,
1993.

[65] D. E. DeMarle, C. P. Gribble, S. Boulos, and S. G. Parker, “Memory sharing for
interactive ray tracing on clusters,” Parallel Comput., vol. 31, no. 2, pp. 221–242, 2005.

[66] W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence mi-
croscopy,” Sci., vol. 248, no. 4951, pp. 73–76, 1990.

[67] S. Dias, K. Bora, and A. Gomes, “CUDA-based triangulations of convolution molecu-
lar surfaces,” in Proc. 19th ACM Int. Symp. High Perform. Distrib. Comput. - HPDC ’10.
Chicago, IL: ACM Press, 2010, pp. 531–540.

[68] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An interaction and coordination
framework for coupled simulation workflows,” Cluster Comput., vol. 15, no. 2, pp.
163–181, 2012.

[69] J. Dubois and J.-B. Lekien, “Highly efficient controlled hierarchical data reduction
techniques for interactive visualization of massive simulation data,” in Proc. EuroVis
2019 - Short Papers, 2019, p. 5.

[70] C. Dyken, G. Ziegler, C. Theobalt, and H.-P. Seidel, “High-speed marching cubes
using HistoPyramids,” Comput. Graph. Forum, vol. 27, no. 8, pp. 2028–2039, 2008.

[71] T. Dykes, A. Hassan, C. Gheller, D. Croton, and M. Krokos, “Interactive 3D visualiza-
tion for theoretical virtual observatories,” Monthly Notices Roy. Astronomical Soc., vol.
477, no. 2, pp. 1495–1507, 2018.

[72] S. Eilemann and R. Pajarola, “Direct send compositing for parallel sort-last rendering,”
in Proc. Eurographics Symp. Parallel Graph. and Vis., 2007, pp. 29–36.

[73] D. Ellsworth, H. Good, and T. Brice, “Distributing display lists on a multicomputer,”
in Proc. 1990 Symp. Interactive 3D Graph., 1990, pp. 147–154.

[74] D. Ellsworth, B. Green, C. Henze, P. Moran, and T. Sandstrom, “Concurrent visual-
ization in a production supercomputing environment,” IEEE Trans. Vis. and Comput.
Graph., vol. 12, no. 5, pp. 997–1004, 2006.

[75] J. Elseberg, D. Borrmann, and A. Nüchter, “One billion points in the cloud – an octree
for efficient processing of 3D laser scans,” ISPRS J. Photogrammetry and Remote Sens.,
vol. 76, pp. 76–88, 2013.

[76] K. Engel, “CERA-TVR: A framework for interactive high-quality teravoxel volume
visualization on standard PCs,” in Proc. 2011 IEEE Symp. Large Data Anal. and Vis.
IEEE, 2011, pp. 123–124.

212

[77] N. Fabian, “In situ fragment detection at scale,” in Proc. IEEE Symp. Large Data Anal.
and Vis., 2012, pp. 105–108.

[78] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Geveci, M. Rasquin,
and K. E. Jansen, “The paraview coprocessing library: A scalable, general purpose in
situ visualization library,” in Proc. 2011 IEEE Symp. Large Data Anal. and Vis., 2011, pp.
89–96.

[79] A. Febretti, A. Nishimoto, T. Thigpen, J. Talandis, L. Long, J. D. Pirtle, T. Peterka,
A. Verlo, M. Brown, D. Plepys, D. Sandin, L. Renambot, A. Johnson, and J. Leigh,
“CAVE2: A hybrid reality environment for immersive simulation and information
analysis,” in Proc. The Eng. Reality Virtual Reality 2013, M. Dolinsky and I. E. McDowall,
Eds., vol. 8649. SPIE, 2013, pp. 9–20.

[80] O. Fernandes, S. Frey, F. Sadlo, and T. Ertl, “Space-time volumetric depth images for
in-situ visualization,” in Proc. 2014 IEEE 4th Symp. Large Data Anal. and Vis. IEEE,
2014, pp. 59–65.

[81] R. A. Finkel and J. L. Bentley, “Quad trees: A data structure for retrieval on composite
keys,” Acta Informatica, vol. 4, pp. 1–9, 1974.

[82] T. Fogal and J. Krüger, “Tuvok, an architecture for large scale volume rendering,” in
Proc. Vision, Model., and Vis. The Eurographics Association, 2010, p. 8.

[83] ——, “An approach to lowering the in situ visualization barrier,” in Proc. First
Workshop In Situ Infrastructures for Enabling Extreme-Scale Anal. and Vis. ACM Press,
2015, pp. 7–12.

[84] T. Fogal, F. Proch, A. Schiewe, O. Hasemann, A. Kempf, and J. Krüger, “Freeprocess-
ing: Transparent in situ visualization via data interception,” in Proc. Eurographics
Symp. Parallel Graph. and Vis., 2014, pp. 49–56.

[85] T. Fogal, A. Schiewe, and J. Krüger, “An analysis of scalable GPU-based ray-guided
volume rendering,” in Proc. 2013 IEEE Symp. Large-Scale Data Anal. and Vis., 2013, pp.
43–51.

[86] R. Fraedrich, S. Auer, and R. Westermann, “Efficient high-quality volume rendering
of SPH data,” IEEE Trans. Vis. and Comput. Graph., vol. 16, no. 6, pp. 1533–1540, 2010.

[87] R. Fraedrich, J. Schneider, and R. Westermann, “Exploring the millennium run–
scalable rendering of large-scale cosmological datasets,” IEEE Trans. Vis. and Comput.
Graph., vol. 15, no. 6, pp. 1251–1258, 2009.

[88] S. Frey and T. Ertl, “Load balancing utilizing data redundancy in distributed volume
rendering,” in Proc. Eurographics Symp. Parallel Graph. and Vis., 2011, pp. 51–60.

[89] W. Fulmer, T. Mahmood, Z. Li, S. Zhang, J. Huang, and A. Lu, “ImWeb: Cross-
platform immersive web browsing for online 3D neuron database exploration,” in
Proc. 24th Int. Conf. Intell. User Interfaces, 2019, pp. 367–378.

[90] K. Gao, W.-k. Liao, A. Nisar, A. Choudhary, R. Ross, and R. Latham, “Using subfiling
to improve programming flexibility and performance of parallel shared-file I/O,” in
Proc. 2009 Int. Conf. Parallel Process. Vienna, Austria: IEEE, 2009, pp. 470–477.

213

[91] W. Ge, R. Sankaran, and J. H. Chen, “Development of a CPU/GPU portable software
library for Lagrangian-Eulerian simulations of liquid sprays,” Int. J. Multiphase Flow,
vol. 128, p. 103293, 2020.

[92] T. A. Gillette, K. M. Brown, and G. A. Ascoli, “The DIADEM metric: Comparing
multiple reconstructions of the same neuron,” Neuroinformatics, vol. 9, no. 2-3, pp.
233–245, 2011.

[93] E. Gobbetti, F. Marton, and J. A. Iglesias-Guitián, “A single-pass GPU ray casting
framework for interactive out-of-core rendering of massive volumetric datasets,” Vis.
Comput., vol. 24, no. 7, pp. 797–806, 2008.

[94] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu, P. Davis,
J. Choi, K. Germaschewski, K. Huck, A. Huebl, M. Kim, J. Kress, T. Kurc, Q. Liu,
J. Logan, K. Mehta, G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta,
K. Takahashi, N. Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky,
“ADIOS 2: The adaptable input output system. A framework for high-performance
data management,” SoftwareX, vol. 12, p. 100561, 2020.

[95] Google, “Snappy.” [Online]. Available: https://github.com/google/snappy

[96] ——, “Tilt brush,” 2016. [Online]. Available: https://www.tiltbrush.com/

[97] L. Gosink, J. Shalf, K. Stockinger, Kesheng Wu, and W. Bethel, “HDF5-FastQuery:
Accelerating complex queries on HDF datasets using fast bitmap indices,” in Proc.
18th Int. Conf. Scientific and Statistical Database Manage., 2006, pp. 149–158.

[98] L. Gosink, J. Anderson, E. Bethel, and K. Joy, “Query-driven visualization of time-
varying adaptive mesh refinement data,” IEEE Trans. Vis. and Comput. Graph., vol. 14,
no. 6, pp. 1715–1722, 2008.

[99] M. Gross, C. Lojewski, M. Bertram, and H. Hagen, “Fast implicit KD-trees: Acceler-
ated isosurface ray tracing and maximum intensity projection for large scalar fields,”
in Proc. Ninth IASTED Int. Conf. Comput. Graph. and Imag., 2007, pp. 67–74.

[100] A. V. P. Grosset, M. Prasad, C. Christensen, A. Knoll, and C. Hansen, “TOD-tree:
Task-overlapped direct send tree image compositing for hybrid MPI parallelism and
GPUs,” IEEE Trans. Vis. and Comput. Graph., vol. 23, no. 6, pp. 1677–1690, 2016.

[101] A. P. Grosset, A. Knoll, and C. Hansen, “Dynamically scheduled region-based image
compositing,” in Proc. Eurographics Symp. Parallel Graph. and Vis., 2016, pp. 79–88.

[102] A. P. Grosset, M. Prasad, C. Christensen, A. Knoll, and C. D. Hansen, “TOD-tree:
Task-overlapped direct send tree image compositing for hybrid MPI parallelism,” in
Proc. Eurographics Symp. Parallel Graph. and Vis., 2015, pp. 67–76.

[103] H. Guo, T. Peterka, and A. Glatz, “In situ magnetic flux vortex visualization in
time-dependent Ginzburg-Landau superconductor simulations,” in Proc. 2017 IEEE
Pacific Vis. Symp. IEEE, 2017, pp. 71–80.

[104] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” SIGMOD
Rec., vol. 14, no. 2, pp. 47–57, 1984.

214

[105] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel, P. Fasel, V. Morozov,
G. Zagaris, T. Peterka et al., “HACC: Simulating sky surveys on state-of-the-art
supercomputing architectures,” New Astron., vol. 42, pp. 49–65, 2016.

[106] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister, “Interactive volume exploration
of petascale microscopy data streams using a visualization-driven virtual memory
approach,” IEEE Trans. Vis. and Comput. Graph., vol. 18, no. 12, pp. 2285–2294, 2012.

[107] M. Hadwiger, P. Ljung, C. R. Salama, and T. Ropinski, “Advanced illumination
techniques for GPU volume raycasting,” SIGGRAPH Asia Tutorials, 2008.

[108] R. Haimes, “pV3 - A distributed system for large-scale unsteady CFD visualization,”
in Proc. 32nd Aerosp. Sciences Meeting and Exhibit, 1994, pp. 1–9.

[109] M. Han, I. Wald, W. Usher, N. Morrical, A. Knoll, and V. Pascucci, “A virtual frame
buffer abstraction for parallel rendering of large tiled display walls,” in Proc. IEEE
VIS Short Papers, 2020, pp. 11–15.

[110] M. Han, I. Wald, W. Usher, Q. Wu, F. Wang, V. Pascucci, C. D. Hansen, and C. R.
Johnson, “Ray tracing generalized tube primitives: Method and applications,” Comput.
Graph. Forum, vol. 38, no. 3, pp. 467–478, 2019.

[111] G. Harel, J.-B. Lekien, and P. P. Pébaÿ, “Two new contributions to the visualization
of AMR grids: I. interactive rendering of extreme-scale 2-dimensional grids II. novel
selection filters in arbitrary dimension,” CEA, France, Tech. Rep., 2017.

[112] ——, “Visualization and analysis of large-scale, tree-based, adaptive mesh refinement
simulations with arbitrary rectilinear geometry,” CEA, France, Tech. Rep., 2017.

[113] K. Harms, T. Leggett, B. Allen, S. Coghlan, M. Fahey, C. Holohan, G. McPheeters,
and P. Rich, “Theta: Rapid installation and acceptance of an XC40 KNL system,”
Concurrency and Computation: Pract. and Experience, vol. 30, no. 1, p. e4336, 2018.

[114] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen, “Direct numerical
simulation of turbulent combustion: Fundamental insights towards predictive
models,” J. Phys.: Conf. Ser., vol. 16, pp. 65–79, 2005.

[115] “HDF5 home page,” http://www.hdfgroup.org/HDF5/.

[116] A. Heirich, E. Slaughter, M. Papadakis, W. Lee, T. Biedert, and A. Aiken, “In situ
visualization with task-based parallelism,” in Proc. In Situ Infrastructures Enabling
Extreme-Scale Anal. and Vis. New York, NY: ACM Press, 2017, pp. 17–21.

[117] K. Heitmann, T. D. Uram, H. Finkel, N. Frontiere, S. Habib, A. Pope, E. Rangel,
J. Hollowed, D. Korytov, P. Larsen, B. S. Allen, K. Chard, and I. Foster, “HACC
cosmological simulations: First data release,” Astrophysical J. Suppl. Ser., vol. 244, p. 17,
2019.

[118] F. Hernell, P. Ljung, and A. Ynnerman, “Local ambient occlusion in direct volume
rendering,” IEEE Trans. Vis. and Comput. Graph., vol. 16, no. 4, pp. 548–559, 2010.

215

[119] D. Hoang, P. Klacansky, H. Bhatia, P.-T. Bremer, P. Lindstrom, and V. Pascucci, “A
study of the trade-off between reducing precision and reducing resolution for data
analysis and visualization,” IEEE Trans. Vis. and Comput. Graph., vol. 25, no. 1, pp.
1193–1203, 2019.

[120] D. Hoang, B. Summa, H. Bhatia, P. Lindstrom, P. Klacansky, W. Usher, P.-T. Bremer,
and V. Pascucci, “Efficient and flexible hierarchical data layouts for a unified encoding
of scalar field precision and resolution,” IEEE Trans. Vis. and Comput. Graph., vol. 27,
no. 2, pp. 603–613, 2021.

[121] W. Hong, F. Qiu, and A. Kaufman, “GPU-based object-order ray-casting for large
datasets,” in Proc. Volume Graph. 2005. IEEE, 2005, pp. 177–185.

[122] M. Hopf and T. Ertl, “Hierarchical splatting of scattered data,” in Proc. 14th IEEE Vis.
IEEE Computer Society, 2003, p. 8.

[123] M. Howison, A. Adelmann, E. W. Bethel, A. Gsell, B. Oswald, and Prabhat, “H5hut:
A high-performance I/O library for particle-based simulations,” in Proc. 2010 IEEE
Int. Conf. On Cluster Comput. Workshops and Posters (CLUSTER WORKSHOPS). IEEE,
2010, pp. 1–8.

[124] M. Howison, E. W. Bethel, and H. Childs, “MPI-hybrid parallelism for volume
rendering on large, multi-core systems,” in Proc. Eurographics Symp. Parallel Graph.
and Vis., 2010, pp. 1–10.

[125] W. M. Hsu, “Segmented ray casting for data parallel volume rendering,” in Proc. 1993
Symp. Parallel Rendering, 1993, pp. 7–14.

[126] “HTC vive,” www.vive.com/us/product/, Apr. 2016.

[127] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi, “A generic scheme for progressive point
cloud coding,” IEEE Trans. Vis. and Comput. Graph., vol. 14, no. 2, pp. 440–453, 2008.

[128] E. Hubo, T. Mertens, T. Haber, and P. Bekaert, “The quantized kd-tree: Efficient ray
tracing of compressed point clouds,” in Proc. 2006 IEEE Symp. Interactive Ray Tracing.
Salt Lake City, UT, USA: IEEE, 2006, pp. 105–113.

[129] S. Ibrahim, T. Stitt, M. Larsen, and C. Harrison, “Interactive in situ visualization
and analysis using Ascent and Jupyter,” in Proc. Workshop In Situ Infrastructures for
Enabling Extreme-Scale Anal. and Vis., 2019, pp. 44–48.

[130] M. Ikits and D. Brederson, “The visual haptic workbench,” in The Viualization Hand-
book, C. D. Hansen and C. R. Johnson, Eds. Burlington, VT: Butterworth-Heinemann,
2005, pp. 431–447.

[131] I. T. Iliev, G. Mellema, K. Ahn, P. R. Shapiro, Y. Mao, and U.-L. Pen, “Simulating
cosmic reionization: How large a volume is large enough?” Monthly Notices Roy.
Astronomical Soc., vol. 439, no. 1, pp. 725–743, 2014.

[132] “Virtual institute for I/O.” [Online]. Available: https://www.vi4io.org

[133] T. Ize, C. Brownlee, and C. D. Hansen, “Real-time ray tracer for visualizing massive
models on a cluster,” in Proc. Eurographics Symp. Parallel Graph. and Vis., 2011, pp.
61–69.

216

[134] H. Jacinto, R. Kéchichian, M. Desvignes, R. Prost, and S. Valette, “A web interface for
3D visualization and interactive segmentation of medical images,” in Proc. 17th Int.
Conf. 3D Web Technol., 2012, pp. 51–58.

[135] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not so fast: Analyzing the
performance of WebAssembly vs. native code,” login Usenix Mag., vol. 44, no. 3,
pp. 12–16, 2019.

[136] B. Jeong, P. A. Navrátil, K. P. Gaither, G. Abram, and G. P. Johnson, “Configurable
data prefetching scheme for interactive visualization of large-scale volume data,” in
Proc. Vis. and Data Anal., 2012, pp. 204–217.

[137] Jianwei Li, Wei-keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham,
A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF: A high-performance
scientific I/O interface,” in SC ’03: Proc. 2003 ACM/IEEE Conf. Supercomputing, 2003.

[138] I. T. Joliffe, Principal Component Analysis. New York, NY: Springer, 1986.

[139] D. Jönsson, E. Sundén, A. Ynnerman, and T. Ropinski, “A survey of volumetric
illumination techniques for interactive volume rendering: A survey of volumetric
illumination techniques,” Comput. Graph. Forum, vol. 33, no. 1, pp. 27–51, 2014.

[140] S. Jourdain, U. Ayachit, and B. Geveci, “ParaViewWeb: A web framework for 3D
visualization and data processing,” Int. J. Comput. Inf. Syst. and Ind. Manage. Appl.,
vol. 3, pp. 870–877, 2011.

[141] R. Kaehler, T. Abel, and H.-C. Hege, “Simultaneous GPU-assisted raycasting of
unstructured point sets and volumetric grid data,” in Proc. Eurographics/IEEE VGTC
Symp. Volume Graph., 2007, pp. 49–56.

[142] A. Kageyama and T. Yamada, “An approach to exascale visualization: Interactive
viewing of in-situ visualization,” Comput. Phys. Commun., vol. 185, no. 1, pp. 79–85,
2014.

[143] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “HPX: A task based
programming model in a global address space,” in Proc. 8th Int. Conf. Partitioned Global
Address Space Program. Models. ACM, 2014, pp. 1–11.

[144] T. Karras, “Maximizing parallelism in the construction of BVHs, octrees, and k-d trees,”
in Proc. Fourth ACM SIGGRAPH/Eurographics Conf. High-Perform. Graph. Eurographics
Association, 2012, pp. 33–37.

[145] J. Kim, H. Abbasi, L. Chacon, C. Docan, S. Klasky, Q. Liu, N. Podhorszki, A. Shoshani,
and K. Wu, “Parallel in situ indexing for data-intensive computing,” in Proc. IEEE
Symp. Large Data Anal. and Vis. IEEE, 2011, pp. 65–72.

[146] Kitware, “VTK.js.” [Online]. Available: https://github.com/Kitware/vtk-js

[147] A. Knoll, I. Wald, S. Parker, and C. Hansen, “Interactive isosurface ray tracing of large
octree volumes,” in Proc. IEEE Symp. Interactive Ray Tracing, 2006, pp. 115–124.

[148] J. Kress, S. Klasky, N. Podhorszki, J. Choi, H. Childs, and D. Pugmire, “Loosely
coupled in situ visualization: A perspective on why it’s here to stay,” in Proc. First
Workshop In Situ Infrastructures for Enabling Extreme-Scale Anal. and Vis., 2015, pp. 1–6.

217

[149] J. Kress, M. Larsen, J. Choi, M. Kim, M. Wolf, N. Podhorszki, S. Klasky, H. Childs, and
D. Pugmire, “Comparing the efficiency of in situ visualization paradigms at scale,” in
Proc. High Perform. Comput., 2019, pp. 99–117.

[150] S. Kumar, C. Christensen, J. A. Schmidt, P.-T. Bremer, E. Brugger, V. Vishwanath,
P. Carns, H. Kolla, R. Grout, J. Chen, M. Berzins, G. Scorzelli, and V. Pascucci, “Fast
multiresolution reads of massive simulation datasets,” in Proc. Supercomputing, vol.
8488. New York, NY: Springer, 2014, pp. 314–330.

[151] S. Kumar, J. Edwards, P.-T. Bremer, A. Knoll, C. Christensen, V. Vishwanath, P. Carns,
J. A. Schmidt, and V. Pascucci, “Efficient I/O and storage of adaptive-resolution data,”
in SC ’14: Proc. Int. Conf. for High Perform. Comput., Networking, Storage and Anal.
IEEE, 2014, pp. 413–423.

[152] S. Kumar, D. Hoang, S. Petruzza, J. Edwards, and V. Pascucci, “Reducing network
congestion and synchronization overhead during aggregation of hierarchical data,”
in Proc. 2017 IEEE 24th Int. Conf. High Perform. Comput. (HiPC), 2017, pp. 223–232.

[153] S. Kumar, A. Humphrey, W. Usher, S. Petruzza, B. Peterson, J. A. Schmidt, D. Harris,
B. Isaac, J. Thornock, T. Harman, V. Pascucci, and M. Berzins, “Scalable data
management of the Uintah simulation framework for next-generation engineering
problems with radiation,” in Proc. Supercomputing Frontiers, 2018, pp. 219–240.

[154] S. Kumar, S. Petruzza, W. Usher, and V. Pascucci, “Spatially-aware parallel I/O for
particle data,” in Proc. 48th Int. Conf. Parallel Process. - ICPP 2019. Kyoto, Japan: ACM
Press, 2019, pp. 1–10.

[155] S. Kumar, V. Vishwanath, P. Carns, J. A. Levine, R. Latham, G. Scorzelli, H. Kolla,
R. Grout, R. Ross, M. E. Papka, J. Chen, and V. Pascucci, “Efficient data restructuring
and aggregation for I/O acceleration in PIDX,” in Proc. Int. Conf. High Perform. Comput.,
Networking, Storage and Anal. IEEE Computer Society Press, 2012, pp. 1–11.

[156] S. Kumar, V. Vishwanath, P. Carns, B. Summa, G. Scorzelli, V. Pascucci, R. Ross,
J. Chen, H. Kolla, and R. Grout, “PIDX: Efficient parallel I/O for multi-resolution
multi-dimensional scientific datasets,” in Proc. 2011 IEEE Int. Conf. Cluster Comput.
IEEE, 2011, pp. 103–111.

[157] B. Laha, D. A. Bowman, and J. J. Socha, “Effects of VR system fidelity on analyzing
isosurface visualization of volume datasets,” IEEE Trans. Vis. and Comput. Graph.,
vol. 20, no. 4, pp. 513–522, 2014.

[158] B. Laha, K. Sensharma, J. D. Schiffbauer, and D. A. Bowman, “Effects of immersion
on visual analysis of volume data,” IEEE Trans. Vis. and Comput. Graph., vol. 18, no. 4,
pp. 597–606, 2012.

[159] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci, and C. Harrison,
“The ALPINE in situ infrastructure: Ascending from the ashes of strawman,” in Proc.
In Situ Infrastructures Enabling Extreme-Scale Anal. and Vis., 2017, pp. 42–46.

[160] M. Larsen, E. Brugger, H. Childs, J. Eliot, K. Griffin, and C. Harrison, “Strawman: A
batch in situ visualization and analysis infrastructure for multi-physics simulation
codes,” in Proc. First Workshop In Situ Infrastructures for Enabling Extreme-Scale Anal.
and Vis. ACM Press, 2015, pp. 30–35.

218

[161] M. Larsen, A. Woods, N. Marsaglia, A. Biswas, S. Dutta, C. Harrison, and H. Childs,
“A flexible system for in situ triggers,” in Proc. Workshop In Situ Infrastructures for
Enabling Extreme-Scale Anal. and Vis. - ISAV ’18. Dallas, Texas: ACM Press, 2018, pp.
1–6.

[162] “LAStools.” [Online]. Available: https://github.com/LAStools/LAStools/

[163] Lawrence Livermore National Laboratory, “Silo: A mesh and field I/O library
and scientific database.” [Online]. Available: https://wci.llnl.gov/simulation/
computer-codes/silo

[164] M. Le Muzic, J. Parulek, A.-K. Stavrum, and I. Viola, “Illustrative visualization of
molecular reactions using omniscient intelligence and passive agents,” Comput. Graph.
Forum, vol. 33, no. 3, pp. 141–150, 2014.

[165] M. Lee, R. Ulerich, N. Malaya, and R. D. Moser, “Experiences from leadership
computing in simulations of turbulent fluid flows,” Comput. in Sci. Eng., vol. 16,
no. 5, pp. 24–31, 2014.

[166] M. Lee, N. Malaya, and R. D. Moser, “Petascale direct numerical simulation of
turbulent channel flow on Up, to 786K Cores,” in Proc. Int. Conf. High Perform.
Computing, Networking, Storage and Analysis, ser. SC’13, 2013.

[167] M. Lee and R. Moser, “Direct numerical simulation of turbulent channel flow up to
Reτ ≈ 5200,” J. Fluid Mechanics, vol. 11, no. 4, pp. 943–945, June 2015.

[168] S. Lefebvre, S. Hornus, and F. Neyret, “Octree textures on the GPU,” in GPU Gems 2,
M. Pharr and R. Fernando, Eds. Boston, MA: Addison-Wesley, 2005, p. 13.

[169] J. K. Li and K.-L. Ma, “P4: Portable parallel processing pipelines for interactive
information visualization,” IEEE Trans. Vis. and Comput. Graph., vol. 26, no. 3, pp.
1548–1561, 2018.

[170] ——, “P5: Portable progressive parallel processing pipelines for interactive data
analysis and visualization,” IEEE Trans. Vis. and Comput. Graph., vol. 26, no. 1, pp.
1151–1160, 2019.

[171] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Trans. Vis. and
Comput. Graph., vol. 20, no. 12, pp. 2674–2683, 2014.

[172] B. Liu, G. J. Clapworthy, F. Dong, and E. Wu, “Parallel marching blocks: A practical
isosurfacing algorithm for large data on many-core architectures,” Comput. Graph.
Forum, vol. 35, no. 3, pp. 211–220, 2016.

[173] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky, R. Tchoua,
J. Lofstead, R. Oldfield, M. Parashar, N. Samatova, K. Schwan, A. Shoshani, M. Wolf,
K. Wu, and W. Yu, “Hello ADIOS: The challenges and lessons of developing leadership
class I/O frameworks: HELLO ADIOS,” Concurrency and Computation: Pract. and
Experience, vol. 26, no. 7, pp. 1453–1473, 2014.

[174] Y. Liu, “The DIADEM and beyond,” Neuroinformatics, vol. 9, no. 2-3, pp. 99–102, 2011.

219

[175] Y. Livnat, H.-W. Shen, and C. R. Johnson, “A near optimal isosurface extraction
algorithm using the span space,” IEEE Trans. Vis. and Comput. Graph., vol. 2, no. 1, pp.
73–84, 1996.

[176] P. Ljung, C. Lundstrom, A. Ynnerman, and K. Museth, “Transfer function based
adaptive decompression for volume rendering of large medical data sets,” in Proc.
IEEE Symp. Volume Vis. and Graph., 2004, pp. 25–32.

[177] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable, metadata rich IO methods
for portable high performance IO,” in Proc. IEEE Int. Symp. Parallel Distrib. Process.
IEEE, 2009, pp. 1–10.

[178] J. Loiseau, H. Lim, B. K. Bergen, N. D. Moss, and F. Alin, “FleCSPH: A parallel and
distributed smoothed particle hydrodynamics framework based on FleCSI,” in Proc.
2018 Int. Conf. High Perform. Comput. & Simul. (HPCS), 2018, pp. 484–491.

[179] W. E. Lorenson and H. E. Cline, “Marching cubes: A high resolution 3d surface
construction algorithm,” SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 163–169, 1987.

[180] B. Loring, W. Bethel, M. Wofl, J. Kress, S. Rizzi, J. Gu, J. Logan, and N. Ferrier,
“Improving performance and portability of M-to-N processing and data redistribution
in in transit analysis and visualization,” in Proc. Eurographics Symp. Parallel Graph. and
Vis., 2020, p. 11.

[181] L. Luo, E. M. Callaway, and K. Svoboda, “Genetic dissection of neural circuits,”
Neuron, vol. 57, no. 5, 2008.

[182] K.-L. Ma, “Runtime volume visualization for parallel CFD,” in Parallel Comput. Fluid
Dyn. 1995. North-Holland, 1996, pp. 307–314.

[183] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh, “Parallel volume rendering
using binary-swap compositing,” IEEE Comput. Graph. and Appl., vol. 14, no. 4, pp.
59–68, 1994.

[184] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer, “PARAMESH:
A parallel adaptive mesh refinement community toolkit,” Comput. Phys. Commun.,
vol. 126, pp. 330–354, 2000.

[185] C. Magliaro, A. L. Callara, N. Vanello, and A. Ahluwalia, “Gotta trace ‘em all: A mini-
review on tools and procedures for segmenting single neurons toward deciphering
the structural connectome,” Frontiers in Bioengineering and Biotechnology, vol. 7, p. 202,
2019.

[186] N. Malaya, D. McDougall, C. Michoski, M. Lee, and C. S. Simmons, “Experiences
porting scientific applications to the intel (KNL) xeon phi platform,” in Proc. Pract.
and Experience in Adv. Res. Comput. 2017 Sustainability, Success and Impact, 2017.

[187] S. Martin, H.-W. Shen, and P. McCormick, “Load-balanced isosurfacing on multi-GPU
clusters,” in Proc. Eurographics Symp. Parallel Graph. and Vis., 2010, pp. 91–100.

[188] MBF Bioscience, “NeuroLucida 11.08.”

220

[189] T. McDonald, W. Usher, N. Morrical, A. Gyulassy, S. Petruzza, F. Federer, A. Angelucci,
and V. Pascucci, “Improving the usability of virtual reality neuron tracing with
topological elements,” IEEE Trans. Vis. and Comput. Graph., vol. 27, no. 2, pp. 744–754,
2021.

[190] E. Meijering, “Neuron tracing in perspective,” Cytometry Part A, vol. 77A, no. 7, pp.
693–704, 2010.

[191] Q. Meng, A. Humphrey, and M. Berzins, “The Uintah framework: A unified
heterogeneous task scheduling and runtime system,” in Proc. SC Companion: High
Perform. Comput., Networking Storage and Anal. IEEE, 2012, pp. 2441–2448.

[192] M. M. Mobeen and L. Feng, “High-performance volume rendering on the ubiquitous
WebGL platform,” in Proc. 2012 IEEE 14th Int. Conf. High Perform. Comput. and
Communication & 2012 IEEE 9th Int. Conf. Embedded Softw. and Syst., 2012, pp. 381–388.

[193] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classification of parallel
rendering,” IEEE Comput. Graph. and Appl., vol. 14, no. 4, pp. 23–32, 1994.

[194] K. Moreland, W. Kendall, T. Peterka, and J. Huang, “An image compositing solution
at scale,” in Proc. 2011 Int. Conf. for High Perform. Comput., Networking, Storage and
Anal., 2011, pp. 1–10.

[195] K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki, V. Vishwanath,
N. Fabian, C. Docan, M. Parashar, M. Hereld, M. E. Papka, and S. Klasky, “Examples of
in transit visualization,” in Proc. 2nd Int. Workshop Petascale Data Analytics: Challenges
and Opportunities. ACM, 2011, pp. 1–6.

[196] K. Moreland, C. Sewell, W. Usher, L.-t. Lo, J. Meredith, D. Pugmire, J. Kress,
H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-M. Chen, R. Maynard, and B. Geveci,
“VTK-m: Accelerating the visualization toolkit for massively threaded architectures,”
IEEE Comput. Graph. and Appl., vol. 36, no. 3, pp. 48–58, 2016.

[197] G. M. Morton, “A computer oriented geodetic data base and a new technique in file
sequencing,” IBM Research, Armonk, NY, Tech. Rep., 1966.

[198] E. Murray, J. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y.
Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. Frosch, V. Wedeen, H. Seung,
and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of
intact systems,” Cell, vol. 163, no. 6, pp. 1500–1514, 2015.

[199] F. Mwalongo, M. Krone, G. Reina, and T. Ertl, “State-of-the-art report in web-based
visualization,” Comput. Graph. Forum, vol. 35, no. 3, pp. 553–575, 2016.

[200] B. Nam and A. Sussman, “Improving access to multi-dimensional self-describing
scientific datasets,” in Proc. 3rd IEEE/ACM Int. Symp. Cluster Comput. and the Grid,
2003, pp. 172–179.

[201] P. A. Navrátil, D. Fussell, C. Lin, and H. Childs, “Dynamic scheduling for large-scale
distributed-memory ray tracing,” in Proc. Eurographics Symp. Parallel Graph. and Vis.,
2012, pp. 61–70.

221

[202] U. Neumann, “Parallel volume-rendering algorithm performance on mesh-connected
multicomputers,” in Proc. 1993 IEEE Parallel Rendering Symp. IEEE, 1993, pp. 97–104.

[203] “Oculus rift development kit 2,” www.oculus.com/en-us/dk2/, July 2014.

[204] “Oculus quest 2,” https://www.oculus.com/quest-2/, Oct. 2020.

[205] P. E. O’Neil, “MODEL 204 architecture and performance,” in High Perform. Transaction
Syst., G. Goos, J. Hartmanis, D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries,
D. Luckham, C. Moler, A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, D. Gawlick,
M. Haynie, and A. Reuter, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987,
vol. 359, pp. 39–59.

[206] S. Oral, S. S. Vazhkudai, F. Wang, C. Zimmer, C. Brumgard, J. Hanley, G. Markomano-
lis, R. Miller, D. Leverman, S. Atchley, and V. V. Larrea, “End-to-end i/o portfolio for
the summit supercomputing ecosystem,” in Proc. Int. Conf. for High Perform. Comput.,
Networking, Storage and Anal., ser. SC ’19. Association for Computing Machinery,
2019.

[207] B. W. O’shea, G. Bryan, J. Bordner, M. L. Norman, T. Abel, R. Harkness, and A. Kritsuk,
“Introducing enzo, an AMR cosmology application,” in Adaptive Mesh Refinement-
Theory and Applications, ser. Lecture Notes in Computational Science and Engineering.
Springer, 2005.

[208] R. Pajarola, “Efficient level-of-details for point based rendering,” in Proc. Sixth IASTED
Int. Conf. Comput. Graph. and Imag., Honolulu, 2003, pp. 141–146.

[209] R. Pajarola, M. Sainz, and R. Lario, “XSplat: External memory multiresolution point
visualization,” in Proc. IASTED Int. Conf. Vis., Imag. and Image Process., Benidorm, 2005,
pp. 628–633.

[210] K. Palmerius, M. Cooper, and A. Ynnerman, “Haptic rendering of dynamic volumetric
data,” IEEE Trans. Vis. and Comput. Graph., vol. 14, no. 2, pp. 263–276, 2008.

[211] V. D. Paola, A. Holtmaat, G. Knott, S. Song, L. Wilbrecht, P. Caroni, and K. Svoboda,
“Cell type-specific structural plasticity of axonal branches and boutons in the adult
neocortex,” Neuron, vol. 49, no. 6, 2006.

[212] H. Park, D. Fussell, and P. Navrátil, “SpRay: Speculative ray scheduling for large data
visualization,” in Proc. IEEE Symp. Large Data Anal. and Vis., 2018, pp. 77–86.

[213] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, “Interactive ray tracing for
isosurface rendering,” in Proc. Vis. ’98, 1998, pp. 233–238.

[214] S. G. Parker and C. R. Johnson, “SCIRun: A scientific programming environment for
computational steering,” in Proc. 1995 ACM/IEEE Conf. Supercomputing. ACM, 1995,
pp. 52–72.

[215] V. Pascucci and R. J. Frank, “Global static indexing for real-time exploration of very
large regular grids,” in Proc. 2001 ACM/IEEE Conf. Supercomputing. IEEE, 2001, pp.
45–45.

222

[216] ——, “Hierarchical indexing for out-of-core access to multi-resolution data,” in Proc.
Hierarchical and Geometrical Methods in Scientific Vis. Berlin: Springer, 2003, pp.
225–241.

[217] M. Pauly, M. Gross, and L. P. Kobbelt, “Efficient simplification of point-sampled
surfaces,” in Proc. Conf. Vis. ’02. IEEE Computer Society, 2002, pp. 163–170.

[218] P. P. Pébaÿ, G. Borghesi, H. Kolla, J. C. Bennett, and S. Treichler, “A novel shard-based
approach for asynchronous many-task models for in situ analysis,” in Proc. In Situ
Infrastructures Enabling Extreme-Scale Anal. and Vis., 2017, pp. 27–31.

[219] P. Pébaÿ, J. C. Bennett, D. Hollman, S. Treichler, P. S. McCormick, C. M. Sweeney,
H. Kolla, and A. Aiken, “Towards asynchronous many-task in situ data analysis using
legion,” in Proc. 2016 IEEE Int. Parallel and Distrib. Process. Symp. Workshops. IEEE,
2016, pp. 1033–1037.

[220] H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3D enables real-time
3D visualization and quantitative analysis of large-scale biological image data sets,”
Nature Biotechnology, vol. 28, no. 4, pp. 348–353, 2010.

[221] F. Perez and B. E. Granger, “IPython: A system for interactive scientific computing,”
Comput. in Sci. & Eng., vol. 9, no. 3, pp. 21–29, 2007.

[222] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur, “A configurable algorithm
for parallel image-compositing applications,” in Proc. Conf. High Perform. Comput.
Networking, Storage and Anal., 2009, pp. 1–10.

[223] S. Petruzza, S. Treichler, V. Pascucci, and P.-T. Bremer, “BabelFlow: An embedded
domain specific language for parallel analysis and visualization,” in Proc. IEEE Int.
Parallel and Distrib. Process. Symp., 2018, pp. 463–473.

[224] M. Pharr and W. R. Mark, “ispc: A SPMD compiler for high-performance CPU
programming,” in Proc. Innovative Parallel Comput. (InPar), 2012. IEEE, 2012, pp.
1–13.

[225] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput.
Phys., vol. 117, pp. 1–19, 1995.

[226] Prabhat, A. Forsberg, M. Katzourin, K. Wharton, and M. Slater, “A comparative
study of desktop, fishtank, and cave systems for the exploration of volume rendered
confocal data sets,” IEEE Trans. Vis. and Comput. Graph., vol. 14, no. 3, pp. 551–563,
2008.

[227] S. Prohaska, A. Hutanu, R. Kahler, and H.-C. Hege, “Interactive exploration of large
remote micro-CT scans,” in Proc. IEEE Vis. 2004, 2004, pp. 345–352.

[228] M. Raji, A. Hota, T. Hobson, and J. Huang, “Scientific visualization as a microservice,”
IEEE Trans. Vis. and Comput. Graph., vol. 26, no. 4, pp. 1760–1774, 2018.

[229] M. Raji, A. Hota, and J. Huang, “Scalable web-embedded volume rendering,” in Proc.
IEEE 7th Symp. Large Data Anal. and Vis. IEEE, 2017, pp. 45–54.

223

[230] B. Rathke, I. Wald, K. Chiu, and C. Brownlee, “SIMD parallel ray tracing of homoge-
neous polyhedral grids,” in Proc. Eurographics Symp. Parallel Graph. and Vis., 2015, pp.
33–41.

[231] T. Rau, P. Gralka, O. Fernandes, G. Reina, S. Frey, and T. Ertl, “The impact of
work distribution on in situ visualization: A case study,” in Proc. Workshop In Situ
Infrastructures for Enabling Extreme-Scale Anal. and Vis., 2019, pp. 17–22.

[232] K. Reda, A. Knoll, K.-i. Nomura, M. E. Papka, A. E. Johnson, and J. Leigh, “Visualizing
large-scale atomistic simulations in ultra-resolution immersive environments.” in
Proc. IEEE Symp. Large-Scale Data Anal. and Vis., 2013, pp. 59–65.

[233] F. Reichl, M. Treib, and R. Westermann, “Visualization of big SPH simulations via
compressed octree grids,” in Proc. IEEE Int. Conf. Big Data. IEEE, 2013, pp. 71–78.

[234] E. Reinhard, A. Chalmers, and F. W. Jansen, “Hybrid scheduling for parallel rendering
using coherent ray tasks,” in Proc. 1999 IEEE Symp. Parallel Vis. and Graph. IEEE
Computer Society, 1999, pp. 21–28.

[235] S. Rizzi, M. Hereld, J. Insley, M. E. Papka, T. Uram, and V. Vishwanath, “Large-scale
co-visualization for LAMMPS using vl3,” in Proc. IEEE 5th Symp. Large Data Anal. and
Vis. IEEE, 2015, pp. 141–142.

[236] ——, “Large-scale parallel visualization of particle-based simulations using point
sprites and level-of-detail,” in Proc. Eurographics Symp. Parallel Graph. and Vis., 2015,
pp. 1–10.

[237] D. Rotem, K. Stockinger, and K. Wu, “Optimizing candidate check costs for bitmap
indices,” in Proc. 14th ACM Int. Conf. Inf. and Knowl. Manage., 2005, pp. 648–655.

[238] S. Rusinkiewicz and M. Levoy, “QSplat: A multiresolution point rendering system
for large meshes,” in Proc. 27th Annu. Conf. Comput. Graph. and Interactive Techn., 2000,
pp. 343–352.

[239] T. Saad and J. C. Sutherland, “Wasatch: An architecture-proof multiphysics develop-
ment environment using a domain specific language and graph theory,” J. Comput.
Sci., vol. 17, pp. 639–646, 2016.

[240] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh, “Hybrid sort-first and sort-last
parallel rendering with a cluster of PCs,” in Proc. ACM SIGGRAPH/EUROGRAPHICS
Workshop Graph. Hardware. The Eurographics Association, 2000, pp. 97–108.

[241] H. Samet, Foundations of Multidimensional and Metric Data Structures. Burlington,
MA: Morgan Kaufmann, 2006.

[242] Sandia National Laboratories, “LAMMPS molecular dynamics simulator.” [Online].
Available: lammps.sandia.gov

[243] ——, “Coupling LAMMPS to other codes,” Accessed Jan. 2020. [Online]. Available:
lammps.sandia.gov/doc/Howto_couple.html

[244] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-lite: A grammar
of interactive graphics,” IEEE Trans. Vis. and Comput. Graph., vol. 23, no. 1, pp. 341–350,
2017.

224

[245] A. Satyanarayan, K. Wongsuphasawat, and J. Heer, “Declarative interaction design
for data visualization,” in Proc. 27th Annu. ACM Symp. User Interface Softw. and Technol.
New York, NY: ACM Press, 2014, pp. 669–678.

[246] K. Schatz, C. Muller, M. Krone, J. Schneider, G. Reina, and T. Ertl, “Interactive visual
exploration of a trillion particles,” in Proc. IEEE 6th Symp. Large Data Anal. and Vis.,
2016, pp. 56–64.

[247] C. Scheiblauer, “Interactions with gigantic point clouds,” Ph.D. dissertation, Inst.
of Comput. Graph. and Algorithms, Vienna Univ. of Technol., Favoritenstrasse 9-
11/E193-02, A-1040 Vienna, Austria, 2014.

[248] L. Schmitz, L. F. Scheidegger, D. K. Osmari, C. A. Dietrich, and J. L. D. Comba,
“Efficient and quality contouring algorithms on the GPU,” Comput. Graph. Forum,
vol. 29, no. 8, pp. 2569–2578, 2010.

[249] W. Schroeder, K. Martin, and B. Lorenson, The Visualization Toolkit, 4th ed. Clifton
Park, NY: Kitware, 2006.

[250] W. Schroeder, R. Maynard, and B. Geveci, “Flying edges: A high-performance scalable
isocontouring algorithm,” in Proc. IEEE 5th Symp. Large Data Anal. and Vis. IEEE,
2015, pp. 33–40.

[251] M. Schütz, “Potree: Rendering large point clouds in web browsers,” Ph.D. dissertation,
Vienna Univ. of Technol., Vienna, Austria, 2016.

[252] M. Schütz, K. Krösl, and M. Wimmer, “Real-time continuous level of detail rendering
of point clouds,” in Proc. IEEE Conf. Virtual Reality and 3D User Interfaces, 2019, pp.
103–110.

[253] M. Sedlmair, M. Meyer, and T. Munzner, “Design study methodology: Reflections
from the trenches and the stacks,” IEEE Trans. Vis. and Comput. Graph., vol. 18, no. 12,
pp. 2431–2440, 2012.

[254] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the I/O perfor-
mance of HPC applications using a parameterized synthetic benchmark,” in SC ’08:
Proc. 2008 ACM/IEEE Conf. Supercomputing, Nov 2008.

[255] T. Sherif, N. Kassis, M.-Ã. Rousseau, R. Adalat, and A. C. Evans, “BrainBrowser:
Distributed, web-based neurological data visualization,” Frontiers in Neuroinformatics,
vol. 8, p. 89, 2015.

[256] R. Sicat, J. Li, J. Choi, M. Cordeil, W.-K. Jeong, B. Bach, and H. Pfister, “DXR: A toolkit
for building immersive data visualizations,” IEEE Trans. Vis. and Comput. Graph.,
vol. 25, no. 1, pp. 715–725, 2019.

[257] A. Siegel, E. Draeger, J. Deslippe, A. Dubey, T. Evans, T. Germann, and W. Hart,
“Early application results on pre-exascale architecture with analysis of performance
challenges and projections WBS 2.2, milestone PM-AD-1080,” Office of Advanced
Scientific Computing Research, Washington, DC, United States, Tech. Rep., 2020.

[258] R. R. Sinha and M. Winslett, “Multi-resolution bitmap indexes for scientific data,”
ACM Trans. Database Syst., vol. 32, no. 3, pp. 16–55, 2007.

225

[259] S. W. Skillman, M. S. Warren, M. J. Turk, R. H. Wechsler, D. E. Holz, and P. M. Sutter,
“Dark sky simulations: Early data release,” Stanford, CA, United States, Tech. Rep.,
2014.

[260] S. Slattery, C. Junghans, D. Lebrun-Grandie, R. Halver, G. Chen, S. Reeve, A. Schein-
berg, C. Smith, and R. Bird, “ECP-copa/cabana: Cabana version 0.2.0,” Mar 2019.

[261] S. Soltanian-Zadeh, K. Sahingur, S. Blau, Y. Gong, and S. Farsiu, “Fast and robust
active neuron segmentation in two-photon calcium imaging using spatiotemporal
deep learning,” Proc. Nat. Acad. Sciences, vol. 116, no. 17, pp. 8554–8563, 2019.

[262] M. Son and S.-E. Yoon, “Timeline scheduling for out-of-core ray batching,” in Proc.
High Perform. Graph. New York, NY: ACM Press, 2017, pp. 1–10.

[263] D. Stanzione, B. Barth, N. Gaffney, K. Gaither, C. Hempel, T. Minyard, S. Mehringer,
E. Wernert, H. Tufo, D. Panda, and P. Teller, “Stampede 2: The evolution of an XSEDE
supercomputer,” in Proc. Pract. and Experience in Adv. Res. Comput. 2017 Sustainability,
Success and Impact, ser. PEARC17. Association for Computing Machinery, 2017.

[264] K. Stockinger, J. Shalf, W. Bethel, and K. Wu, “DEX: Increasing the capability of
scientific data analysis pipelines by using efficient bitmap indices to accelerate
scientific visualization,” Lawrence Berkeley National Laboratory, Berkeley, CA,
United States, Tech. Rep. LBNL–57023, 837248, 2005.

[265] K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel, “Query-driven visualization of large
data sets,” in Proc. IEEE Vis., 2005, pp. 167–174.

[266] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: A system for query, analysis, and
visualization of multidimensional relational databases,” IEEE Trans. Vis. and Comput.
Graph., vol. 8, no. 1, pp. 52–65, 2002.

[267] Y. Su, G. Agrawal, J. Woodring, K. Myers, J. Wendelberger, and J. Ahrens, “Taming
massive distributed datasets: Data sampling using bitmap indices,” in Proc. 22nd Int.
Symp. High-Perform. Parallel and Distrib. Comput. New York, NY: ACM, 2013, pp.
13–24.

[268] Y. Su, Y. Wang, and G. Agrawal, “In-situ bitmaps generation and efficient data analysis
based on bitmaps,” in Proc. 24th Int. Symp. High-Perform. Parallel and Distrib. Comput.,
2015, pp. 61–72.

[269] Tae-Joon Kim, Xin Sun, and Sung-Eui Yoon, “T-ReX: Interactive global illumination of
massive models on heterogeneous computing resources,” IEEE Trans. Vis. and Comput.
Graph., vol. 20, no. 3, pp. 481–494, 2014.

[270] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in ROMIO,” in
Proc. Seventh Symp. the Frontiers Massively Parallel Computation, 1999.

[271] D. Thompson, S. Jourdain, A. Bauer, B. Geveci, R. Maynard, R. R. Vatsavai, and
P. O’Leary, “In situ summarization with VTK-m,” in Proc. In Situ Infrastructures
Enabling Extreme-Scale Anal. and Vis. New York, NY: ACM Press, 2017, pp. 32–36.

226

[272] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma, and D. R. O’hallaron,
“From mesh generation to scientific visualization: An end-to-end approach to parallel
supercomputing,” in Proc. 2006 ACM/IEEE Conf. Supercomputing. ACM, 2006, pp.
91–106.

[273] U. U. Turuncoglu, B. Önol, and M. Ilicak, “A new approach for in situ analysis in fully
coupled earth system models,” in Proc. Workshop In Situ Infrastructures for Enabling
Extreme-Scale Anal. and Vis., 2019, pp. 6–11.

[274] W. Usher, J. Amstutz, C. Brownlee, A. Knoll, and I. Wald, “Progressive CPU volume
rendering with sample accumulation,” in Proc. Eurographics Symp. Parallel Graph. and
Vis., 2017, pp. 21–30.

[275] W. Usher, J. Amstutz, J. Günther, A. Knoll, G. P. Johnson, C. Brownlee, A. Hota,
B. Cherniak, T. Rowley, J. Jeffers, and V. Pascucci, “Scalable CPU ray tracing for in
situ visualization using OSPRay,” in In Situ Vis. for Comput. Sci. (in press), H. Childs,
C. Garth, and J. Bennett, Eds., 2021, ch. 4.

[276] W. Usher, X. Huang, S. Petruzza, S. Kumar, S. R. Slattery, S. T. Reeve, F. Wang, C. R.
Johnson, and V. Pascucci, “Adaptive spatially aware I/O for multiresolution particle
data layouts,” in Proc. 35th IEEE Int. Parallel & Distrib. Process. Symp. (IPDPS), 2021,
p. 10.

[277] W. Usher, P. Klacansky, F. Federer, P.-T. Bremer, A. Knoll, J. Yarch, A. Angelucci, and
V. Pascucci, “A virtual reality visualization tool for neuron tracing,” IEEE Trans. Vis.
and Comput. Graph., vol. 24, no. 1, pp. 994–1003, 2018.

[278] W. Usher, H. Park, M. Lee, P. Navrátil, D. Fussell, and V. Pascucci, “A simulation-
oblivious data transport model for flexible in transit visualization,” in In Situ Vis. for
Comput. Sci. (in press), H. Childs, C. Garth, and J. Bennett, Eds., 2021, ch. 7.

[279] W. Usher and V. Pascucci, “Interactive visualization of terascale data in the browser:
Fact or fiction?” in Proc. IEEE 10th Symp. Large Data Anal. and Vis., 2020, pp. 27–36.

[280] W. Usher, S. Rizzi, I. Wald, J. Amstutz, J. Insley, V. Vishwanath, N. Ferrier, M. E. Papka,
and V. Pascucci, “libIS: A lightweight library for flexible in transit visualization,” in
Proc. Workshop In Situ Infrastructures for Enabling Extreme-Scale Anal. and Vis., 2018, pp.
33–38.

[281] W. Usher, I. Wald, J. Amstutz, J. Günther, C. Brownlee, and V. Pascucci, “Scalable ray
tracing using the distributed framebuffer,” Comput. Graph. Forum, vol. 38, no. 3, pp.
455–466, 2019.

[282] W. Usher, I. Wald, A. Knoll, M. E. Papka, and V. Pascucci, “In situ exploration of
particle simulations with CPU ray tracing,” Supercomputing Frontiers and Innovations,
vol. 3, no. 4, pp. 4–18, 2016.

[283] T. Vierjahn, A. Schnorr, B. Weyers, D. Denker, I. Wald, C. Garth, T. W. Kuhlen, and
B. Hentschel, “Interactive exploration of dissipation element geometry,” in Proc.
Eurographics Symp. Parallel Graph. and Vis. The Eurographics Association, 2017, pp.
53–62.

227

[284] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, “Topology-aware data
movement and staging for I/O acceleration on blue gene/P supercomputing systems,”
in Proc. 2011 Int. Conf. for High Perform. Comput., Networking, Storage and Anal. ACM,
2011, pp. 1–11.

[285] V. Vishwanath, M. Hereld, and M. E. Papka, “Toward simulation-time data analysis
and I/O acceleration on leadership-class systems,” in Proc. IEEE Symp. Large Data
Anal. and Vis. IEEE, 2011, pp. 9–14.

[286] A. Vlachos, “Advanced VR rendering,” 2015, talk at the Game Developer’s Confer-
ence.

[287] E. L. Vote, “A new methodology for archaeological analysis,” Ph.D. dissertation,
Brown Univ., Providence, RI, United States, 2001.

[288] I. Wald, C. Benthin, and P. Slusallek, “A flexible and scalable rendering engine for
interactive 3D graphics,” Saarland University, Saarbrüken, Germany, Tech. Rep.,
2002.

[289] I. Wald, C. Brownlee, W. Usher, and A. Knoll, “CPU volume rendering of adaptive
mesh refinement data,” in Proc. SIGGRAPH Asia 2017 Symp. Vis., 2017, pp. 1–8.

[290] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P. Seidel, “Faster isosurface ray
tracing using implicit KD-trees,” IEEE Trans. Vis. and Comput. Graph., vol. 11, no. 5,
pp. 562–572, 2005.

[291] I. Wald, G. P. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Günther, and
P. Navrátil, “OSPRay – a CPU ray tracing framework for scientific visualization,”
IEEE Trans. Vis. and Comput. Graph., vol. 23, no. 1, pp. 931–940, 2017.

[292] I. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, and M. E. Papka, “CPU ray
tracing large particle data with balanced P-k-d trees,” in Proc. 2015 IEEE Scientific Vis.
Conf. (SciVis), 2015, pp. 57–64.

[293] I. Wald, P. Slusallek, and C. Benthin, “Interactive distributed ray tracing of highly
complex models,” in In Proc. Rendering Techn. 2001, 2001, pp. 277–288.

[294] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst, “Embree: A kernel
framework for efficient CPU ray tracing,” ACM Trans. Graph., vol. 33, no. 4, pp.
1–8, 2014.

[295] F. Wang, N. Marshak, W. Usher, C. Burstedde, A. Knoll, T. Heister, and C. R. Johnson,
“CPU ray tracing of tree-based adaptive mesh refinement data,” Comput. Graph. Forum,
vol. 39, no. 3, pp. 1–12, 2020.

[296] F. Wang, I. Wald, and C. R. Johnson, “Interactive rendering of large-scale volumes on
multi-core CPUs,” in Proc. IEEE 9th Symp. Large Data Anal. and Vis., 2019, pp. 27–36.

[297] F. Wang, I. Wald, Q. Wu, W. Usher, and C. R. Johnson, “CPU isosurface ray tracing of
adaptive mesh refinement data,” IEEE Trans. Vis. and Comput. Graph., vol. 25, no. 1,
pp. 1142–1151, 2019.

228

[298] K.-C. Wang, N. Shareef, and H.-W. Shen, “Image and distribution based volume
rendering for large data sets,” in Proc. 2018 IEEE Pacific Vis. Symp. IEEE, 2018, pp.
26–35.

[299] “WebAssembly.” [Online]. Available: https://webassembly.org/

[300] “WebGPU.” [Online]. Available: https://gpuweb.github.io/gpuweb/

[301] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, “The structure of the nervous
system of the nematode caenorhabditis elegans,” Philos. Trans. Roy. Soc. London B:
Biological Sci.s, vol. 314, no. 1165, pp. 1–340, 1986.

[302] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel in situ coupling of simulation
with a fully featured visualization system,” in Proc. Eurographics Symp. Parallel Graph.
and Vis., 2011, pp. 101–109.

[303] J. Wilhelms and A. V. Gelder, “Octrees for faster isosurface generation,” ACM Trans.
Graph., vol. 11, no. 3, pp. 201–227, 1992.

[304] M. Wimmer and C. Scheiblauer, “Instant points: Fast rendering of unprocessed point
clouds,” in Proc. Symp. Point-Based Graph., 2006, pp. 129–136.

[305] H. K. T. Wong, J. Z. Li, F. Olken, D. Rotem, and L. Wong, “Bit transposition for very
large scientific and statistical databases,” Algorithmica, vol. 1, no. 1-4, pp. 289–309,
1986.

[306] J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and K. Heitmann, “In-situ
sampling of a large-scale particle simulation for interactive visualization and analysis,”
Comput. Graph. Forum, vol. 30, no. 3, pp. 1151–1160, 2011.

[307] J. Woodring, M. Petersen, A. Schmeiber, J. Patchett, J. Ahrens, and H. Hagen, “In situ
eddy analysis in a high-resolution ocean climate model,” IEEE Trans. Vis. and Comput.
Graph., vol. 22, no. 1, pp. 857–866, 2016.

[308] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-Michel, C. Geddes,
J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Lauret, J. Meredith, P. Messmer, E. Otoo,
V. Perevoztchikov, A. Poskanzer, Prabhat, O. Rübel, A. Shoshani, A. Sim, K. Stockinger,
G. Weber, and W.-M. Zhang, “FastBit: Interactively searching massive data,” J. Phys.:
Conf. Ser., vol. 180, p. 012053, 2009.

[309] K. Wu, W. Koegler, J. Chen, and A. Shoshani, “Using bitmap index for interactive
exploration of large datasets,” in Proc. 15th Int. Conf. Scientific and Statistical Database
Manage. IEEE, 2003, pp. 65–74.

[310] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap indices with efficient
compression,” ACM Trans. Database Syst., vol. 31, no. 1, pp. 1–38, 2006.

[311] K. Wu, A. Shoshani, and K. Stockinger, “Analyses of multi-level and multi-component
compressed bitmap indexes,” ACM Trans. Database Syst., vol. 35, no. 1, pp. 1–52, 2010.

[312] K. Wu, A. Shoshani, W.-M. Zhang, J. Lauret, and V. Perevoztchikov, “Grid collec-
tor: Using an event catalog to speed up user analysisin distributed environment,”
Lawrence Berkeley National Laboratory, Berkeley, CA, United States, Tech. Rep., 2004.

229

[313] K. Wu, K. Stockinger, and A. Shoshani, “Breaking the curse of cardinality on
bitmap indexes,” in Proc. Scientific and Statistical Database Manage., B. Ludäscher
and N. Mamoulis, Eds., vol. 5069. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 348–365.

[314] Q. Wu, W. Usher, S. Petruzza, S. Kumar, F. Wang, I. Wald, V. Pascucci, and C. D.
Hansen, “VisIt-OSPRay: Toward an exascale volume visualization system,” in Proc.
Eurographics Symp. Parallel Graph. and Vis., 2018, pp. 13–23.

[315] B. Yang, J. B. Treweek, R. P. Kulkarni, B. E. Deverman, C.-K. Chen, E. Lubeck, S. Shah,
L. Cai, and V. Gradinaru, “Single-cell phenotyping within transparent intact tissue
through whole-body clearing,” Cell, vol. 158, no. 4, pp. 945–958, 2014.

[316] Y. C. Ye, T. Neuroth, F. Sauer, K.-L. Ma, G. Borghesi, A. Konduri, H. Kolla, and
J. Chen, “In situ generated probability distribution functions for interactive post hoc
visualization and analysis,” in Proc. IEEE 6th Symp. Large Data Anal. and Vis. IEEE,
2016, pp. 65–74.

[317] Y. C. Ye, Y. Wang, R. Miller, K.-L. Ma, and K. Ono, “In situ depth maps based feature
extraction and tracking,” in Proc. IEEE 5th Symp. Large Data Anal. and Vis. IEEE, 2015,
pp. 1–8.

[318] A. Ynnerman, T. Rydell, A. Persson, A. Ernvik, C. Forsell, P. Ljung, and C. Lundström,
“Multi-touch table system for medical visualization,” in Proc. 36th Annu. Conf. Eur.
Assoc. for Comput. Graph., EuroGraphics, 2015, pp. 9–12.

[319] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma, “In situ visualization for
large-scale combustion simulations,” IEEE Comput. Graph. and Appl., vol. 30, no. 3, pp.
45–57, 2010.

[320] H. Yu, C. Wang, and K.-L. Ma, “Massively parallel volume rendering using 2– 3 swap
image compositing,” in SC ’08: Proc. 2008 ACM/IEEE Conf. Supercomputing, 2008, pp.
1–11.

[321] Y. Yucong, R. Miller, and K.-L. Ma, “In situ pathtube visualization with explorable
images,” in Proc. Eurographics Symp. Parallel Graph. and Vis., 2013, p. 8.

[322] A. Zakai, “Emscripten: An LLVM-to-JavaScript compiler,” in Proc. ACM Int. Conf.
Companion Object Oriented Program. Syst. Languages and Appl. Companion, 2011, pp.
301–312.

[323] H. C. Zanúz, B. Raffin, O. A. Mures, and E. J. Padrón, “In-transit molecular dynamics
analysis with apache flink,” in Proc. Workshop In Situ Infrastructures for Enabling
Extreme-Scale Anal. and Vis., 2018, pp. 25–32.

[324] D. Z. Zhang, Q. Zou, W. B. VanderHeyden, and X. Ma, “Material point method
applied to multiphase flows,” J. Comput. Phys., vol. 227, no. 6, pp. 3159–3173, 2008.

[325] F. Zhang, S. Lasluisa, T. Jin, I. Rodero, H. Bui, and M. Parashar, “In-situ feature-based
objects tracking for large-scale scientific simulations,” in Proc. 2012 SC Companion:
High Perform. Comput., Networking Storage and Anal. IEEE, 2012, pp. 736–740.

230

[326] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky, M. Parashar, N. Pod-
horszki, K. Schwan, and M. Wolf, “PreDatA–preparatory data analytics on peta-scale
machines,” in Proc. IEEE Int. Symp. Parallel Distrib. Process. IEEE, 2010, pp. 1–12.

[327] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T.-A. Nguyen, J. Cao,
H. Abbasi, S. Klasky, N. Podhorszki, and H. Yu, “FlexIO: I/O middleware for location-
flexible scientific data analytics,” in Proc. IEEE 27th Int. Symp. Parallel and Distrib.
Process. IEEE, 2013, pp. 320–331.

[328] Q. Zheng, C. D. Cranor, D. Guo, G. R. Ganger, G. Amvrosiadis, G. A. Gibson, B. W.
Settlemyer, G. Grider, and F. Guo, “Scaling embedded in-situ indexing with DeltaFS,”
in Proc. Int. Conf. for High Perform. Comput., Networking, Storage, and Anal., 2018, pp.
1–15.

