

FACHBEREICH ELEKTROTECHNIK UND ANGEWANDTE NATURWISSENSCHAFTEN

ABTEILUNG MOLEKULARE BIOLOGIE

Development of an Application for MEG/MRI Co-Registration

Entwicklung einer Anwendung zur MEG/MRT-Co-Registrierung

Bachelorarbeit

im Rahmen der Erlangung des akademischen Grades

Bachelor of Sciences (B.Sc.)
im Studiengang Molekulare Biologie

im Schwerpunkt Bioinformatik

vorlegt von

Philo Reipke

Matrikelnummer:

201122106

Recklinghausen, August 2014

Angaben über Arbeitsgruppe und Betreuer

Diese Arbeit wurde durchgeführt am

Institut für Biomagnetismus und Biosignalanalyse

der Westfälischen Wilhelms-Universität Münster

unter der Anleitung von Priv.-Doz. Dr Carsten Wolters

Betreuer:

1. Gutachter: Prof. Dr. Heinrich Brinck

2. Gutachter: Priv.-Doz. Dr. Carsten Wolters

Westfälische Hochschule

Fachbereich Elektrotechnik und angewandte Naturwissenschaften

Abteilung Molekulare Biologie

August-Schmidt-Ring 10

45665 Recklinghausen

II

Erklärung zur Bachelorarbeit

III

Danksagung

An dieser Stelle möchte ich mich bei allen Personen bedanken, die mich während meines
Projekts und bei der Anfertigung dieser Arbeit unterstützt haben.

Ein besonderer Dank geht dabei an Priv.-Doz. Dr. Carsten Wolters und Andreas Wollbrink
für die Anleitung der Projektarbeit und Betreuung am Institut für Biomagnetismus und
Biosignalanalyse in Münster sowie an Prof. Dr. Heinrich Brinck der Westfälischen
Hochschule für die hervorragende Betreuung und Unterstützung während meines Projekts
und der Anfertigung dieser Arbeit.

Darüber hinaus bedanke ich mich bei Ümit Aydin, Ute Trompeter und allen Mitarbeitern des
Instituts für Biomagnetismus und Biosignalanalyse sowie bei meiner Kommilitonin und
Projektpartnerin Marie Theiß, die mich mit der Aufnahme und Verarbeitung der verwendeten
Test-Datensätze unterstützt und die Entwicklung meiner Anwendung vorangebracht haben.

Ein Dank gilt auch an Stefan Neumann, der mir, durch die Möglichkeit seinen ehemaligen
Kurs Scientific Computing zu besuchen, mein Interesse für die Programmierung wieder
geweckt und meine Neuausrichtung hin zur naturwissenschaftlichen Informatik maßgeblich
beeinflusst hat.

IV

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung einer Anwendung zur MEG/MRT-

Co-Registrierung unter Verwendung der Plattform Java. Ziel dabei war es eine Anwendung zu

entwickeln, welche die Möglichkeit zur Registrierung von Punktwolken an polygonale

Kopfoberflächen mittels des ICP-Algorithmus bietet, der durch rigide Transformation die

Distanz benachbarter Punktepaare zwischen den Datensätzen minimiert. Die Anwendung

sollte sich im Gegensatz zu etablierten Anwendungen auf möglichst vielen Betriebssystem

ohne das Vorhandensein zusätzlicher Software ausführen lassen und durch einfache

Verständlichkeit und Bedienung der Programmoberfläche auszeichnen. Die angewandte

Methodik sollte dabei eine Optimierung zur manuellen Vorgehensweise zur MEG/MRT-Co-

Registrierung bieten und qualitativ gleichwertige oder optimierte Ergebnisse im Vergleich zu

etablierten Anwendungen liefern. Unter Verwendung vorhandener Testdaten konnte gezeigt

werden, dass die geschaffene Anwendung nachvollziehbare und reproduzierbare Ergebnisse

liefert. Ob die erzielten Transformations-Ergebnisse eine optimierte Lokalisierung von

kortikaler, neuronaler Aktivität ermöglichen, ist durch die Einbeziehung der Anwendung in

den allgemeinen Arbeitsablauf noch nachzuweisen.

Stichwörter

MEG-MRT, Co-Registrierung, Polhemus Digitizer, Iterative Closest Point, ICP, rigide

Transformation, Surface Registration, Java, Anwendung, JSurfReg

V

Abstract

This thesis is about the development of an application for MEG/MRI-co-registration using

the Java platform. The aim was to develop an application that allows the visualization and

processing of a given set of points by registering it to a given polygonal surface representation,

using the iterative closest point algorithm to perform a rigid transformation that minimizes the

mean distance between pairs of closest points among both data sets. In contrast to established

applications, this new application was meant to be easy to deploy on almost any operating

system without the need of further software and to provide an intuitive and easy-to-use

graphical user interface (GUI). These goals have been accomplished completely. The

processing of first data sets provided comprehensible and reproducible results that have to be

involved in the process of localizing cortical neuronal activity in future to evaluate their

quality.

Keywords

MEG-MRI, co-registration, Polhemus digitizer, tterative closest point, ICP, surface

registration, rigid transformation, Java, application, JSurfReg

VI

Contents

Angaben über Arbeitsgruppe und Betreuer ... II

Erklärung zur Bachelorarbeit ...III

Danksagung .. IV

Zusammenfassung .. V

Stichwörter ... V

Abstract ... VI

Keywords .. VI

Abbreviations .. IX

Figures ... X

1 Introduction ... 11

1.1 Aim .. 12

1.2 Thesis Structure .. 12

2 Theory and Methods .. 13

2.1 MEG-MRI Co-Registration ... 13

2.1.1 CTF MEG Head Coordinate System .. 14

2.1.2 MRI Voxel Coordinate System ... 15

2.2 Polhemus FASTRAK System .. 16

2.3 Iterative Closest Point Algorithm.. 17

3 Implementation ... 19

3.1 Java Programming Language .. 19

3.2 JAMA ... 19

3.3 FIDENTIS ... 20

3.3.1 K-D Tree .. 20

3.3.2 Iterative Closest Point Algorithm .. 22

3.4 File Formats ... 25

3.4.1 Wavefront OBJ .. 25

3.4.2 EEG POS ... 26

VII

3.5 Data Processing Workflow ... 27

3.5.1 Set Fiducials .. 27

3.5.2 Pre-Alignment ... 27

3.5.3 Registration ... 29

3.5.4 Transformation Export ... 30

4 Summary and Discussion ... 32

4.1 Design .. 32

4.1.1 Integration .. 32

4.1.2 Data Processing ... 33

4.2 Methodology and Results ... 33

4.3 Outlook .. 35

Literature & References ... 36

Appendix ... 38

VIII

Abbreviations

CT X-ray computed tomography

CTF CTF MEG head coordinate system, same as SCS

EEG Electroencephalography

FIDENTIS Forensic 3D Facial Identification Software

GUI Graphical user interface

ICP Iterative closest point (algorithm)

JAMA Java Matrix Package

JRE Java runtime environment

JVM Java virtual machine

LPA Left peri-auricular

MEG Magnetoencephalography

MRI Magnetic resonance imaging

NAS Nasion

OBJ Wavefront OBJECT file format

POS EEG POS file format

RPA Right peri-auricular

SCS Subject coordinate system, same as CTF

IX

Figures

Fig. 1: MEG references, origin and X-Y plane .. 14

Fig. 2: CTF MEG head coordinate system ... 15

Fig. 3: Meshed head surface with representation of its X, Y and Z axes. 16

Fig. 4: Example for a Wavefront OBJ (.obj) file ... 25

Fig. 5: Example for an EEG POS (.pos) file ... 26

Fig. 6: Comparison of POS file data orientation before and after pre-aligning 29

Fig. 7: Content of an ASCII text file generated by using the export function 31

Fig. 8: Surface registration, trend of the mean squared distance during iterations 34

X

Chapter 1: Introduction

1 Introduction

In medical diagnostics neuronal imaging techniques such as Electroencephalography (EEG) or

Magnetoencephalography (MEG) occupy an inferior role compared to the widely established

imaging techniques such as Magnetic resonance imaging (MRI) or computed tomography

(CT), yet their role is of great importance for research and therapy in some specific areas, e.g.

in the field of epilepsy.

The strength of neuronal imaging techniques is the ability of capturing electro-magnetic fields

caused by neuronal activity inside our brains, generated by thoughts, motions and visceral

functions controlled by our autonomic nervous system.

Both systems, EEG and MEG, thereby deliver a great temporal resolution, yet their spatial

resolution is imprecise. By combining EEG and MEG the spatial resolution can be improved.

In the field of epilepsy, an improvement of the spatial resolution is greatly appreciated.

Epilepsy is caused by degenerated neurons. These neurons show a permanently increased

activity that can be measured by neuronal imaging techniques. Finding the accurate location

of the cause of epileptic symptoms is of great importance for therapy, e.g. to prepare a surgery

to remove the damaged tissue.

To locate neuronal activity, the data captured by neuronal imaging techniques has to be

combined with anatomical data acquired using medical imaging techniques such as MRI,

allowing the evaluation of neuronal activity according to the individual anatomy. The process

of combining both types of data is referred to as MEG-MRI co-registration, allowing the

location of neuronal activity within a given area. The size of this area depends very much on

the spatial resolution of the used neuronal imaging technique, but also on the resolution of the

MRI data and the quality of the performed MEG-MRI co-registration.

As for co-registration, there exist many different approaches to perform the combination of

neuronal and anatomical imaging data. They all have in common that the positions of the

head localization coils, coils attached to the subject's head during acquiring MEG data, have to

be recovered within the anatomical imaging data to perform a data transformation.

11

Chapter 1: Introduction

1.1 Aim

Aim of this thesis is to develop a new application for MEG-MRI co-registration, applying the

methodology of employing an additional head surface representation that has been digitized

by using a Polhemus FASTRAK system. This set of digitized points will be matched to a

polygonal head surface representation by using the iterative closest point (ICP) algorithm. The

applied transformation during this surface registration will be stored to allow the exportation

for further usage.

The developed application must thereby meet certain criteria that ensure reliability and the

outcome of an alternative for MEG-MRI co-registration to established tools and software such

as FieldTrip (see [1]) or MNE (see [2]). It must be easy to deploy on the most common

operating system (e.g. Windows, Linux, Mac) without the need of making any adjustments or

installing of further software. The provided GUI must be intuitive and easy to handle and

must not require any programming skills to perform the surface registration.

The quality and accuracy of the achieved results applied by the used methodology will not be

evaluated in this thesis, but will be discussed at the end, also regarding a sample

transformation obtained by using a FieldTrip workflow.

1.2 Thesis Structure

The first chapter of this thesis is providing a short introduction to the field of neuroimaging,

stating the motivation behind the aim of developing a new application. The second chapter

explains theory necessary to understand the topic of MEG-MRI co-registration and goes into

detail about the methodical approach that will be applied by the developed application. The

third chapter illustrates the design of the application. It describes the supported file formats

and goes into detail about the implemented functions and algorithms, clarifying how the

transformation for MEG-MRI co-registration is being computed, providing pseudocode to

exemplify some parts of the algorithms. The fourth and last chapter reflects the aim and

outcome of the developed application, summarizing features and discussing the applied

methodology.

12

Chapter 2: Theory and Methods

2 Theory and Methods

2.1 MEG-MRI Co-Registration

MEG-MRI co-registration is understood as the merging of MEG and MRI data necessary for

the localization of brain activity due to transferring acquired MEG signals to a subject specific

3D head model constructed from MRI data.

When measuring MEG signals there are (usually three) head localization coils attached to a

subject's skin. Depending on the used MEG system these localization coils will be employed

to construct the coordinate system representing the acquired data (see 2.1.1 CTF MEG Head

Coordinate System). Frequently measuring them allows the recovering of their position in real-

time and enables the MEG system to compensate head position changes by adjusting the

acquired data relative to the recovered positions of these head localization coils, or to be more

precisely, by reconstruction the used coordinate system.

When combining acquired MEG with MRI data, the problem that both data types are stored

with different coordinate system has to be solved as they are differing in the locations of their

origin and the orientations of their (x, y and z) axes.

To receive both data types in the same coordinate system at least one data set has to be

adjusted by performing a rigid transformation, a mathematical operation that preserves the

distances between every pair of points within the given vector space, applying the same

rotation and translation to every point stored within the object that is being transformed. This

can usually be achieved by setting the positions of the head localization coils on the subject's

3D head model, computing the necessary transformation and applying it to the according

MEG data. This step is referred to as MEG-MRI co-registration. Any inaccuracy within this

step, e.g. by selecting the inexact positions of the head localization coils, might result in a

significant deviance and thereby in a shift of the recovered locations for all MEG signals

within the transformed data set.

The difference in the coordinate systems is being described in the subchapters below.

13

Chapter 2: Theory and Methods

2.1.1 CTF MEG Head Coordinate System

The CTF MEG head coordinate system, also known as subject coordinate system (SCS), is

commonly used to store MEG data. Its structure is based on the measured locations of three

head localization coils (fiducials) that are attached to a subject's skin during the MEG data

acquisition. These localization coils are frequently measured and allow to recover the position

of the head inside the MEG helmet in real-time as the measured positions of the head

localization coils are used to rebuild the coordinate system, minimizing the deviation of

measured signal sources.

As described in the CTF MEGTM File Formats manual [3], the coordinate system is set up the

following way:

"The CTF MEG System sets the origin and axes orientation on a reference

determined by the three head localization coils, shown in Figure 1 as the green

(left), red (right), and blue (nasion) dots.

The origin is defined as the midpoint between the left and right preauricular

fiducial points. This means the CTF MEG head coordinate system uses both

positive (to the subject's left) and negative values (to the subject's right).

Figure 1: MEG references, origin and X-Y plane ([3], page 158)

The orientation of the axes is determined by setting the x-axis on the line from

the origin through the nasion fiducial point. The x-y plane (violet) is defined

by the three fiducial points.

14

Chapter 2: Theory and Methods

The y-axis is perpendicular to the x-axis on the x-y plane. Since the human

head rarely has perfect symmetry, the y-axis is not likely through a fiducial

point, but could be slightly ahead (as in this sample) or behind it.

The z-axis (see Figure 2) is perpendicular to both the x- and y-axes." ([3], page

157-159)

Figure 2: CTF MEG head coordinate system ([3], page 159)

2.1.2 MRI Voxel Coordinate System

Medical imaging methods such as MRI produce regular, rectangular arrays of points and cells.

The points stored within these arrays is referred to as voxels, volumetric pixels, storing the

actual imaging data. These voxels are separated by a spacing, e.g. 2 mm, depending on the

resolution of the used MRI system. The total number of voxels produced depends on the

imaging size and settings of the used MRI system, e.g. 256x256x256 voxels. The coordinate

system that represents these voxels is thereby referred to as MRI voxel coordinate system or

image coordinate system. Its origin is often located in the upper left corner, their x axis

pointing to the right, their y axis pointing to the bottom and their z axis pointing backwards

(DICOM standard, see [4]). The coordinate system's origin is equivalent to the first voxel

stored, its index to be 1/1/1.

15

Chapter 2: Theory and Methods

Figure 3: Meshed head surface with representation of its X, Y and Z axes.

By using the imaging data stored within these voxels, an image-segmentation to create 3D

head models can be performed. If this results in the change of the initial coordinate system

depends very much on the software used for segmentation. Figure 3 shows an example for a

3D head model and the coordinate system representing the polygonal data where the software

used to segment the MRI image data generated a new coordinate system.

2.2 Polhemus FASTRAK System

In chapter 2.1 the topic of MEG-MRI co-registration has been described, giving an idea how

it can be performed using an easy approach by selecting the positions of the three head

localization coils on a 3D head surface model followed by computing the necessary coordinate

transformation. As the selected positions will rarely be precise, this will most likely result in a

significant deviation and a shift of the localized source for the acquired MEG signals. To

minimize this deviation, the developed application is going to use a different approach,

supporting the use of an additional head surface representation that has been acquired using a

Polhemus FASTRAK® system.

The Polhemus FASTTRAK system is a 3D digitizer and motion tracker with high resolution,

accuracy and range. It can be applied for high accuracy head tracking or the digitization of

head surfaces. The system can be set to use the MEG CTF coordinate system. By recording

16

Chapter 2: Theory and Methods

the exact positions of the three head localization coils attached to a subject's skin before or

after acquiring MEG data, the Polhemus system can set up the exact same coordinate system

as the MEG is using to store its acquired data. Recording additional points representing the

scalp and characteristic facial features (e.g. about 100 points) then allows the possession of a

head surface representation using the CTF MEG head coordinate system. This digitized

surface representation can be used to significantly improve the quality of the MEG-MRI co-

registration.

Reflecting the purpose of the co-registration, its goal is to match MEG and MRI data. Instead

of recovering the exact positions of the attached head localization coils on a 3D head surface or

within MRI images, the digitized surface representation acquired with the Polhemus system

can now be used to perform the registration. By using the ICP Algorithm (see 2.3 Iterative

Closest Point Algorithm) the digitized head surface representation (acquired using Polhemus

FASTRAK) can be easily registered to a polygonal 3D model (made by segmenting MRI data)

representing the same head surface.

Using this method, manually selecting the positions of the head localization coils can be

avoided, potentially resulting in achieving a minimization of the deviation and a more accurate

localization of neuronal activity.

2.3 Iterative Closest Point Algorithm

The Iterative Closest Point (ICP) [5] algorithm used in the described approach for MEG-MRI

co-registration was developed by Besl and McKay in the year 1992. The algorithm is reducing

the general not-linear minimization problem of matching shape data of any kind to an

iterative point matching problem.

Given two data sets consisting of point coordinates representing two 3D model shapes that

may correspond to one another, the iterative closest point algorithm delivers an approach to

estimate the optimal rotation and translation that aligns or registers both shapes by

minimizing the distance between them, allowing determination of the equivalence of the

shapes via a mean-square distance metric.

17

Chapter 2: Theory and Methods

The algorithm can be initialized by forwarding two data sets, indicated as target 𝑨 =

 {𝑷𝟏,𝑷𝟐, . . . ,𝑷𝒊} and source 𝑩 = {𝑷𝟏,𝑷𝟐, . . . ,𝑷𝒊}. Using an iterative process the algorithm

registers the source data set 𝑩 to the target data set 𝑨. Employing the Euclidean distance the

algorithm finds the closest neighboring point in data set 𝑨 for each point in data set 𝑩. The

resulting mean squared distance in between all pairs of points has now to be minimized by

determining a specific translation and rotation. The resulting transformation parameters will

then be used to transform source data set 𝑩. The iteration will be repeated until no significant

change of the mean squared distance between the pairs of closest points can be achieved

(threshold).

The following chapters are going into more detail about the ICP algorithm and the

computations made to find the ideal transformation parameters as the implemented algorithm

is being described (see 3.3.2 Iterative Closest Point Algorithm).

18

Chapter 3: Implementation

3 Implementation

3.1 Java Programming Language

The first step in developing the application was to choose a programming language. It was

decided to use the object-oriented programming language Java that is the most commonly

used programming language today, being present on over a billion different devices (desktop

computers, laptops, tablets, mobile phones, ...) and thereby being highly established.

Java provides a great portability, induced by the fact that Java source code compiles to

bytecode (intermediate code). This intermediate code can be run on any Java virtual machine

(JVM) available for many different operating system (Windows, Linux, Mac OS), making it so

successful. Java also delivers various different interfaces and frameworks to work with

languages such as PHP, Python, Ruby or JavaScript, giving developers the chance to integrate

functions written in other languages into their applications.

The recent major release of Java Platform, Standard Edition 8 and its JDK (see [6]) included

Java FX 3D that brought new graphics features to Java without the need of using external

graphic libraries such as OpenGL. These features are used to generate and display 3D objects

within the developed application. The platform Java FX also allows application developers to

easily create applications that behave consistently across multiple platforms, thereby fitting the

set requirements perfectly.

Being the most common programming language also gave the opportunity to benefit from a

large number of open source projects and libraries, such as JAMA (see 3.2 JAMA) or

FIDENTIS (see 3.3 FIDENTIS) that assisted the development of the application.

3.2 JAMA

JAMA (see [7]) is an open source basic linear algebra package for Java that provides user-level

classes for constructing and manipulating real, dense matrices. The JAMA classes Matrix and

EigenvalueDecomposition have been integrated completely to the developed application and are

used to perform matrix operations necessary for the implementation of the ICP algorithm (see

3.3.2: Iterative Closest Point Algorithm).

19

Chapter 3: Implementation

3.3 FIDENTIS

Forensic 3D Facial Identification Software (FIDENTIS, see [8]) is an open source project

based on multidisciplinary cooperation with the goal to do research in the field related to 3D

representations of the human face and to develop software solutions for it. The application is

being developed by Faculty of Informatics of Masaryk University (MU) in Brno to be used in

research of Department of Anthropology at Faculty of Science MU. The FIDENTIS source

code provided implementations of a k-d tree and the ICP algorithm used within the developed

application. The subchapters below are giving a detailed description to both of them.

3.3.1 K-D Tree

A k-dimensional tree is a data structure that can be used to organize a set of points, doing so

by partitioning the data set's k-dimensional space, using keys to access the separated

dimensions. To apply a k-d tree is useful when performing searches within multi-dimensional

data, achieving a much faster computation time than with any linear methods.

The k-d tree used within the developed application was provided by the FIDENTIS source

code and represents a three dimensional structure.

The basic structure of the k-d tree is an object of type TreeMap (see [9]), a Java

implementation for a balanced red-black tree. It represents the first dimension (X) and is used

to create nodes for every X coordinate in space. When adding a point, the algorithm tries to

find a present node, using the specific X coordinate as the key value. If it is not to be found, a

new node for this coordinate will be stored, therefore creating a new TreeMap. This new tree

will represent the Y coordinates having the same X coordinates. If now again no object using

the specific key value (Y) is present, a new object of type Set (see [9]) will be created. This

object represents a list, storing all Z coordinates that have the same X and Y coordinates as its

previous nodes.

20

Chapter 3: Implementation

The pseudocode below exemplifies the implemented method for adding points to the k-d tree.

Class: KdTree

Method: put

Input: Point3D (X, Y, Z)

TreeMap<Key, TreeMap<Key, Set<Key>>> TREE

TREE = new TreeMap ()

IF (TREE containsKey X) THEN // searching first dimension for x key

 IF (TREE.getBranch(X) containsKey Y) THEN // search for y key

 TREE.getBranch(X).getSet(Y).add(Z) // add key for z

 ELSE

 Set<Key> setY = new Set() // storing points with same x and y key

 setY.add(Z) // add key for z

 TREE.getBranch(X).addSet(Y, setY)

 ENDIF

ELSE

 TreeMap<Key, Set<Key>> branchY = new TreeMap()

 Set<Key> setY = new Set() // storing points with same x and y key

 setZ.add(Z) // add key for z

 branchY.addSet(Y, setY) // add Set to tree for specific key

 TREE.putBranch(X, branchY) // contains x key

ENDIF

Given a source point, the closest target point within a given k-d tree can be found by

performing a range check. This range check uses the source point's values as keys and adds an

error range to search all three dimensions, finding all target points within a given key range

defined as 𝒓𝒂𝒏𝒈𝒆 = 𝒌𝒆𝒚 ± 𝒆𝒓𝒓𝒐𝒓. All found points will be added to a list. The closest

target point can then be found by searching for the smallest value of the mean squared

distance 𝒅 between source and target points in space defined as:

𝒅 = �(𝒙𝒂 − 𝒙𝒃)𝟐 + (𝒚𝒂 − 𝒚𝒃)𝟐 + (𝒛𝒂 − 𝒛𝒃)² (1)

21

Chapter 3: Implementation

3.3.2 Iterative Closest Point Algorithm

The implementation of the ICP algorithm used in the developed application was provided by

the FIDENTIS source library. It requires for an input of two lists of points 𝑨 =

 {𝑷𝟏,𝑷𝟐, . . . ,𝑷𝒊} and 𝑩 = {𝑷𝟏,𝑷𝟐, . . . ,𝑷𝒊} with 𝑷𝒊 = {𝒙𝒊,𝒚𝒊, 𝒛𝒊}. The first point list 𝑨

represents the target object that will be partitioned by using a k-d tree. The second list 𝑩

represents the source object that will be transformed. The algorithm is using a do-while loop,

computing and performing a transformation of the source object in every iteration.

Every iteration begins by finding the closest target point 𝑷𝒊 ∈ 𝑨 for every source point 𝑷𝒋 ∈ 𝑩

by using a k-d tree, adding the found points to a new list 𝑪 = {𝑷𝟏,𝑷𝟐, . . . ,𝑷𝒌}.

The distance between every pair of points 𝑷𝒋 ∈ 𝑩 and 𝑷𝒌 ∈ 𝑪 with 𝒋 = 𝒌 will thereby be

stored, using it to compute the mean distance that we need to translate the source points. The

pseudocode below illustrates the first part of the iteration:

Double xDistance // sums distances in x dimension

Double yDistance // sums distances in y dimension

Double zDistance // sums distances in z dimension

List<Vector3D> neighbors // stores neighboring points

FOREVERY point IN source

 FIND CLOSTEST neighbor TO point IN target // using k-d tree

 ADD neighbor TO neighbors

 ADD X DISTANCE FROM point TO neighbor TO xDistance

 ADD Y DISTANCE FROM point TO neighbor TO yDistance

 ADD Z DISTANCE FROM point TO neighbor TO zDistance

ENDFOR

After determining the closest target points 𝑷𝒌 ∈ 𝑪 for every source point 𝑷𝒋 ∈ 𝑩 and storing

their mean distances for translation, the rotation has to be prepared.

22

Chapter 3: Implementation

The algorithm therefore computes a covariance matrix 𝑴:

𝑴 = ∑ 𝑺𝒊𝑻𝒏
𝒊=𝟏 𝑻𝒊 (2)

where 𝑺𝒊 is defined as the matrix created from the specific source point 𝑷𝒋 ∈ 𝑩 with 𝒋 = 𝒊:





















−
−

−
−−−

=

0
0

0
0

xyz

xzy

yzx

zyx

i

ppp
ppp
ppp
ppp

R (3)

and 𝑻𝒊 to be defined as the matrix created from the closest target point 𝑷𝒌 ∈ 𝑪 with 𝒌 = 𝒊:





















−
−

−
−−−

=

0
0

0
0

xyz

xzy

yzx

zyx

i

qqq
qqq

qqq
qqq

Q (4)

The pseudocode below illustrates the steps described above.

Matrix matrixM // covariance matrix

FOREVERY point IN source PAIRED WITH neighbor IN neighbors

 CREATE matrixR FROM point // same index as neighbor

 CREATE matrixQ FROM neighbor // same index as point

 TRANSPOSE matrixR

 MULTIPLY matrixR BY matrixQ

 SUM matrixQ TO matrixM

ENDFOR

The computed matrix 𝑴 is then used to generate a quaternion for performing the rotation.

23

Chapter 3: Implementation

Quaternions are a number system that extends the complex numbers, obtaining an important

role for performing rotations in ℝ3.

A quaternion 𝒒 can be declared as a 1x4 dimensional vector:

𝒒 = {𝒘,𝒙𝒊,𝒚𝒋, 𝒛𝒌|𝒘,𝒙,𝒚, 𝒛 ∈ ℝ} (5)

To the complex numbers 𝒊, 𝒋,𝒌 thereby apply specific rules declared by Hamilton, e.g.:

𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = 𝒊𝒋𝒌 = −𝟏 (6)

𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊, 𝒌𝒊 = 𝒋 (7)

𝒋𝒊 = −𝒌, 𝒌𝒋 = −𝒊, 𝒊𝒌 = −𝒋 (8)

Regarding these complex numbers, quaternion multiplication is non-commutative and the

multiplications thereby have to be performed in the right order.

The rotation quaternion 𝒒 = {𝒒𝒘,𝒒𝒙,𝒒𝒚,𝒒𝒛} can be generated by using the eigenvector

𝒆 = {𝒆𝟏,𝒒𝟐,𝒒𝟑,𝒒𝟒} representing the largest eigenvalue of the matrix 𝑴.

Two quaternions 𝒒 = {𝒘,𝒙𝒊,𝒚𝒋, 𝒛𝒌|𝒘,𝒙,𝒚, 𝒛 ∈ ℝ} with 𝒘 ≠ 𝟎 can be multiplied to

generate a new quaternion by using the Hamilton product:

𝒒𝒕𝒐𝒕𝒂𝒍 = 𝒒𝟏𝒒𝟐 = (𝒘𝟏 + 𝒙𝟏𝒊 + 𝒚𝟏𝒋 + 𝒛𝟏𝒌)(𝒘𝟐 + 𝒙𝟐𝒊 + 𝒚𝟐𝒋 + 𝒛𝟐𝒌) (8)

Resulting in a new quaternion representing their combined rotation. To perform rotations

with quaternions the following equation can be used:

𝒓′ = 𝒒𝒓𝒒−𝟏 (10)

with 𝒓 to be the initial point 𝒑��⃑ = {𝒙��⃑ ,𝒚��⃑ , 𝒛�⃑ } written as a quaternion 𝒓�⃑ = {𝒘,𝒑��⃑ } with 𝒘 = 𝟎

and 𝒓′ to be representing the rotated quaternion. The point coordinates can be recovered by

simply using the x, y and z values within the newly generated quaternion.

For more information about quaternions and how to perform rotations, refer to [13].

24

Chapter 3: Implementation

The multiplication using the same rotation quaternion 𝒒 will be performed for all source

points 𝑷𝒋 ∈ 𝑩, also adding the mean distances in x, y and z distance that has been stored

before to translate the source points, resulting in a completely transformed data set.

The iterative process stops as soon as a maximum number of iterations has been performed or

the change in the Euclidean distance between the closest pairs of points drops below a

threshold value.

3.4 File Formats

The developed application supports the input of two types of data, Wavefront OBJ and EEG

POS files. Any data imported to the application will be displayed as one or several 3D objects

in the viewer area.

More information about the supported file formats can be found in the subchapters below.

3.4.1 Wavefront OBJ

The Wavefront OBJ file format is a commonly used standard for the representation of

polygonal data in ASCII form. It can contain various types of data, e.g. geometric vertices,

texture vertices, vertex normals, points, lines or faces, each type of data being indicated by its

own keyword, such as v for vertex or f for face. The most frequently encountered OBJ files

contain data that represents polygonal faces. Figure 6 shows an example for such a file that

contains a square represented by two polygons (triangles).

Figure 4: Example for an Wavefront OBJ (.obj) file.

25

Chapter 3: Implementation

The implemented method for reading Wavefront OBJ files is capable of reading any correctly

formatted OBJ file. However, the data has to be representing a polygonal surface made from

triangles. For constructing a polygonal surface, only vertex and face data has to be given. Any

other information (i.e. textures, normals) within the files will be ignored.

As every triangle has a front and a back face and face normals are not being used to indicate

which is which, the order of the vertices representing a triangle (face) is very important.

The developed application is using an object of type TriangleMesh (see [10]) provided by Java

FX to display the surface within the viewer area, resulting in a polygonal surface representation

that can be displayed in the form of a mesh or as a rendered surface. By default, this object is

using the counter-clockwise (or right-hand rule) winding order to determine the front face.

Using varying winding orders within the file might result in strange behavior of the displayed

objects but should not affect the quality of the achieved transformation.

For more information refer to [10] for the TriangleMesh and to [11] for the OBJ file format.

3.4.2 EEG POS

The EEG POS file format is a tab-delimited ASCII text file that can be used by the Polhemus

FASTRAK digitizing system to store the acquired data.

The first line of the text file always indicates the number of points stored within the file. The

following lines then contain the actual data, each line representing a single point, beginning

with the current point index (with 1 to be the first index) followed by its X, Y and Z

coordinates, separated by a tab. Additionally, the file stores coordinates for the nasion, left and

right ear coils at the end of the file. The lines then start with the keywords "nasion", "left" and

"right", respectively. Figure 3.3 shows an example for a typical POS file.

Figure 5: Example for an EEG POS (.pos) file.

26

Chapter 3: Implementation

The POS file data will be displayed within the applications viewer area by using predefined

objects of type Sphere (refer to [10]). Every point within the data set is indicated by one

sphere. The color and size of the points indication the positions of the three head localization

(fiducials) coils differ from the other points stored within a single data set, i.e. regular points

being blue and fiducials being purple.

For more information about the EEG POS file format, refer to [12].

3.5 Data Processing Workflow

The registration of surface (OBJ file) data and digitizer (POS file) is achieved in three steps,

resulting in the output of a transformation matrix that can be stored in a ASCII text file by

using the implemented export function.

The methods used to perform the data processing are described in the subchapters below.

3.5.1 Set Fiducials

After importing an OBJ file representing a polygonal head surface, the estimated positions of

the head localization coils (also refered to as fiducials) have to be determined on the surface

displayed within the viewer area.

By selecting the "Set fiducials" button below the viewer area, a new window will open. This

window provides options to set and store the positions for the nasion (NAS), left (LPA) and

right (RPA) head localization coils determined by clicking on the polygonal surface

representation displayed in the viewer area.

The selected positions will be stored in the application kernel, represent as point data. This

data is necessary for the following step, the pre-alignment of the POS file data to the OBJ file

data described in the next subchapter.

3.5.2 Pre-Alignment

This data processing step requires a POS file to be imported to the application and the

positions of the three head localization coils to be determined on the displayed polygonal head

27

Chapter 3: Implementation

surface representation. It is assuring that the imported POS file data and the OBJ file data

share the same orientation regarding their represented head surfaces. An altered

implementation of the regular ICP algorithm (see 3.3.2 Iterative Closest Point Algorithm) is

used to perform this operation.

To initiate the algorithm, POS file data and the three point positions of the head localization

coils selected in the previous step have to be forwarded. The POS file data will be used as

source and the three forwarded positions will be used as target, thereby differing from the

regular ICP algorithm that is using the OBJ file data as target. Also, the regular algorithm

assigns pairs of points among source and target for every point within the source data set and

uses them to compute the ideal translation and rotation. The altered algorithm is only using

three fixed pairs of points to compute the transformation. Three specific points stored in the

source data set, declared as "nasion" (NAS), "left" (LPA) and "right" (RPA) within the POS

file (see 3.4.2) will be paired with one of the three forwarded points, each of them determined

as one of the three specific points in the previous step.

The transformation parameters will still be computed as illustrated in the subchapter

describing the implementation of the ICP algorithm (see 3.3.2) and will be applied to all

points within the source data set. The algorithm iterates until the change of the mean distance

between the paired points drops below the set threshold. The total amount of translation and

rotation applied during this processing step is being stored.

An option to assign weightings to the each point representing the NAS, LPA or RPA point has

been implemented. By assigning a specific weighting to any fiducial, the according pair of

points will be involved to the computation of translation and rotation a specific number of

times, resulting in a shift of the source data, bringing the related points closer together. The

default setup assigns a weighting of 10 to the nasion, 1 to the left and 1 to the right fiducial. It

can be changed by using the "Settings" menu item accessible in the "Edit" menu.

Figure 5 on the next page illustrates the results achieved by performing the pre-alignment. The

purple spheres represent the NAS, LPA and RPA localization coils that are used for pre-

aligning, the blue spheres represent all other points within the POS data set.

28

Chapter 3: Implementation

Figure 6: Comparison of POS file data orientation before (left) and after pre-aligning (right).

3.5.3 Registration

This step uses the regular ICP algorithm to perform the final registration of the pre-aligned

POS file data to the current OBJ file data.

As described before (see 3.3.2), the algorithm requires for an input of two sets of points to

initiate, using the POS file data as source and the OBJ file data as target. The algorithm then

assigns pairs of closest points among source and target, using them to compute the

transformation parameters that will be applied to all points within the source data set, iterating

until the change of distance between the assigned pairs of points drops below the given

threshold. The total amount of translation and rotation applied during this processing step is

combined with the transformation applied in the previous processing step, the pre-alignment.

The combined transformation is then being stored.

As for pre-aligning, the implementation for this algorithm is also providing options to apply

weightings to the NAS, LPA or RPA points stored within the POS file data. By setting a value

to 0, the specific point will not be involved to compute the transformation parameters at all.

29

Chapter 3: Implementation

The application is able to perform two registrations at once, using two different sets of options

that allow the comparison of the achieved results with different parameters.

3.5.4 Transformation Export

A window showing the transformation applied to the POS file data during pre-aligning and

registering can be opened by using the "Show transformation" button or by using the "Show >

Transformation" menu item in the "File" menu. Additionally, the applied transformations can

be exported to an ASCII text file by employing the implemented export function, accessible in

the "File" menu by choosing the "Save > Transformation" menu item. A radio button menu

will appear, providing options to either store the transformation applied during pre-alignment,

registration #1 or registration #2, thereby referring to the two options sets available to perform

the registration.

The rotation applied during pre-aligning and registration is stored in the form of quaternions.

A normalized (unit) quaternion 𝒒 = {𝒘,𝒙,𝒚, 𝒛|𝒘,𝒙,𝒚, 𝒛 ∈ ℝ} can be converted to a 3x3

dimensional rotation matrix 𝑹 by using the following equation (from [5], 21):

𝑹 = �
(qw2 + qx2 − qy

2 − qz2) 2(qxqy + qzqw) 2(qxqz + qyqw)
2(qxqy + qzqw) (qw2 + qy2 − qx2 − qz2) 2(qyqz + qxqw)

2(qxqz + qyqw) 2(qyqz + qxqw) (qw2 + qz2 − qx
2 − qy2)

� (11)

The translation applied during pre-alignment and registration is stored in the form of a point

𝑷 = {𝒙,𝒚, 𝒛}, representing a vector from the coordinate system's origin to the specific point

coordinates.

To export the transformation parameters, rotation and translation are combined into one 4x4

transformation matrix 𝑻:





















−−++−
+−−++
+−−−+

=

1000
)(2)(2

)(2)(2
)(2)(2

2222

2222

2222

translateyxzwxwzyywzx

translatexwzyzxywzwyx

translateywzxzwyxzyxw

zqqqqqqqqqqqq
yqqqqqqqqqqqq
xqqqqqqqqqqqq

T (12)

30

Chapter 3: Implementation

The transformation matrix gets stored in an ASCII text file, also containing information about

the used OBJ and POS files. Figure 7 below shows an example for a file generated using the

export function.

Figure 7: Content of an ASCII text file generated by using the export function.

31

Chapter 4: Summary and Discussion

4 Summary and Discussion

4.1 Design

The aim of this thesis was to develop a reliable application that can be used for MEG-MRI co-

registration as an alternative to established software and tools. The resulting application has

been named JSurfReg, short for Java Surface Registration. It meets most of the criteria and

requirements stated in the aim at the beginning of this thesis.

As Java is commonly present on most systems, JSurfReg provides a great portability and is easy

to deploy. The implemented GUI adjusts its available options and displayed objects according

to the present data and current processing step. It does not require any programming skills and

thereby also provides less adjustable parameters than some other tools. The available options

should still meet most users requirements. In advance to the implemented features provided by

the newest version of Java FX, the GUI should behave consistently across multiple platforms.

Still, its functionality has yet only been approved for Windows 7 (64 bit). However, it was also

possible to run the application on an Ubuntu Linux (64 bit) operating system, but as the given

system did not meet the hardware requirements set by Java FX 3D, trying to import files

resulted in an error due to the fact that the systems graphic processing unit was not supported

by the implemented Java FX 3D features.

4.1.1 Integration

Regarding the implemented file formats, it should be easy to integrate JSurfReg into most

existing workflows.

When working with Polhemus systems, EEG POS files are a common standard and can be

generated by the specific system. For the creation of polygonal surface representations,

software tools often provide export functions to generate OBJ files. To convert data types,

multiple software tools are available, as well as own methods for file conversion could be

employed easily, e.g. by using MATLAB.

The output of an ASCII text file containing the achieved transformation allows easy

conversion and use for further processing.

32

Chapter 4: Summary and Discussion

4.1.2 Data Processing

The JSurfReg workflow for data processing has been described in the subchapters of part 3.5.

It contains three steps that perform actions analogous to established software and tools.

The first two processing steps, setting the head localization coils (fiducials) and pre-aligning

the POS data, have to be performed to assure the right orientation of the current POS file

data. This steps can be referred to as manual registration. It is an unavoidable step as the ICP

algorithm always converges to a local minimum that differs regarding the initiate orientations.

The use of the estimated positions for the head localization coils on the polygonal head surface

representation provides a comfortable and good method to obtain the right initial orientation.

The option to assign weightings to each fiducial point allows to manipulate the pre-alignment.

E.g. by assigning a weighting of 20 to the NAS point will almost fix it in place, not taking the

positions of the LPA and RPA point into much account. For users that want to use the pre-

alignment for manual alignment only, the export function allows storing of the applied

transformation.

The final registration will then be performed by the ICP algorithm, minimizing the distances

between both data sets. Assigning weightings to the fiducial points allows to make adjustments

to the results. By providing the chance to perform the registration with two different options

sets at once, users can compare the outcome of different registrations in the viewer area,

deciding which one is of better quality. As for pre-aligning, every transformation can be stored

easily by using the export function.

4.2 Methodology and Results

The methodology of registering digitized sets of points to polygonal head surface

representations by using the ICP algorithm in terms of MEG-MRI co-registration has proven

to be reliable in the past and has thereby been applied by other software and tools.

33

Chapter 4: Summary and Discussion

During the development of JSurfReg, two data sets, both consisting of a polygonal head surface

representation and several digitized point clouds, have been available to evaluate first results

achieved by using the applied methods.

The results shown in Figure 8 indicate

that the achieved transformation by

using the ICP algorithm improved

significantly compared to a manual

registration (distance at 0 iterations) as

the mean squared distance between the

closest points among both data set have

been minimized after about 15 to 25

iterations.

Still, in some cases, the registration

appeared to be less accurate regarding

the visualized positions of the head

localization coils. Their new positions

differed a lot from the previously set

positions, moving them inside the

polygonal head surface representation

while all other points have been located on the surface. As the obtained positions of the head

localization coils are of great importance (reminder: they are used for constructing the MEG

coordinate system), this would most likely result in a significant shift of the projected localized

sources for neuronal activity. To assign weightings, especially to the NAS point, improved the

visual outcome of the registration but increased the mean squared distance.

This problem is considered to be caused by a deformation of the point sets acquired by the

Polhemus FASTRAK digitizer system and has to be solved by improving the acquiring

method. Also, the quality of the polygonal head surface achieved by segmenting the MRI data

can cause a loss of accuracy. The higher the resolution of the acquired MRI data, the more

precise can the segmentation be performed.

34

Chapter 4: Summary and Discussion

The results achieved with JSurfReg could not yet been compared into detail to results achieved

with other software or tools. However, comparing a transformation matrix obtained by using a

FieldTrip workflow compared to a transformation matrix obtained with JSurfReg for the same

data was showing almost similar values. As the ICP algorithm always converges to a local

minimum according to the initiate orientation, the obtained transformation matrix is not

expected to be identical, hence the results seem to be very promising.

4.3 Outlook

It is expected that the developed application JSurfReg delivers a functionality similar to

established software and tools and that the generated transformation results are reliable.

However, transformation results obtained by using JSurfReg should not be used for scientific

or medical analysis and localization of neuronal activity before the expected reliability has been

verified, for instance by trying to localize the source of signals acquired of test models.

The application can be further developed by implementing additional options, e.g. by giving

the possibility of removing single points within the digitized point clouds or even by assigning

weightings to points other than the fiducials. Also, an option to manually adjust the

registration should be implemented.

In future, the application could be developed to provide additional functionalities or be

combined with other software and tools. The availability of interfaces and frameworks to work

with other programming languages such as Python, Ruby, JavaScript allows an easy way of

implementing existing functions into Java applications.

35

Literature & References

[1] FieldTrip, Donders Institute for Brain, Cognition and Behaviour

URL: http://fieldtrip.fcdonders.nl/ (August 2014)

[2] M. S. Hämäläinen, MNE software, Athinoula A. Martinos Center for Biomedical Imaging

URL: https://martinos.org/mne/ (August 2014)

[3] VSM MedTech Ltd, CTF MEG Head Coordinate System, CTF MEGTM File Formats,

page 157, Revision 1.1 (11 April 2006)

[4] Digitial Imaging and Communications in Medicine (DICOM), C.7.6.2.1.1 Image

Position and Image Orientation, DICOM PS3.1

URL:http://medical.nema.org/dicom/2013/output/chtml/part03/sect_C.7.html#sect_C.7.6.2.

1.1 (August 2014)

[5] Besl P.J., McKay N.D.: A method for Registration of 3D-Shapes, IEEE Trans PAMI, 14

(2), 1922

[6] Oracle, JDK 8 Release Notes

URL: http://www.oracle.com/technetwork/java/javase/8-relnotes-2226341.html (August

2014)

[7] JAMA: A Java Matrix Package

URL: http://math.nist.gov/javanumerics/jama/ (August 2014)

[8] FIDENTIS - Forensic 3D Facial Identification Software

URL: http://fidentis.cz/ (August 2014)

[9] Oracle, Java Platform SE 7 Documentation

URL: http://docs.oracle.com/javase/7/ (August 2014)

[10] Oracle, Java Platform SE 8 Documentation

URL: http://docs.oracle.com/javase/8/ (August 2014)

 [11] FileFormat.info, Wavefront OBJ File Format

URL: http://www.fileformat.info/format/wavefrontobj/egff.htm (August 2014)

36

[12] VSM MedTech Ltd, EEG Pos File Format, CTF MEGTM File Formats, page 59,

Revision 1.1 (11 April 2006)

[13] Berthold K.P. Horn: Closed-form solution of absolute orientation using unit

quaternions, Journal of the Optical Society of America A, Vol. 4, page 629 (April 1987)

37

Appendix

All literature and references used in this thesis can be found on the attached CD-ROM. It also

contains the current executable files for JSurfReg (v1.0), the relating source code and

documentations (javadoc).

38

	Angaben über Arbeitsgruppe und Betreuer
	Erklärung zur Bachelorarbeit
	Danksagung
	Zusammenfassung
	Stichwörter
	Abstract
	Keywords
	Abbreviations
	Figures
	1 Introduction
	1.1 Aim
	1.2 Thesis Structure

	2 Theory and Methods
	2.1 MEG-MRI Co-Registration
	2.1.1 CTF MEG Head Coordinate System
	2.1.2 MRI Voxel Coordinate System

	2.2 Polhemus FASTRAK System
	2.3 Iterative Closest Point Algorithm

	3 Implementation
	3.1 Java Programming Language
	3.2 JAMA
	3.3 FIDENTIS
	3.3.1 K-D Tree
	3.3.2 Iterative Closest Point Algorithm

	3.4 File Formats
	3.4.1 Wavefront OBJ
	3.4.2 EEG POS

	3.5 Data Processing Workflow
	3.5.1 Set Fiducials
	3.5.2 Pre-Alignment
	3.5.3 Registration
	3.5.4 Transformation Export

	4 Summary and Discussion
	4.1 Design
	4.1.1 Integration
	4.1.2 Data Processing

	4.2 Methodology and Results
	4.3 Outlook

	Literature & References
	Appendix

