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Abstract— To reconstruct the electrophysiological activity of
brain responses, source analysis is performed through the solu-
tion of the forward and inverse problems. The former contains
a unique solution while the latter is ill-posed. In this regard,
many algorithms have been suggested relying on different prior
information for solving the inverse problem. Recently, neural
networks have been used to deal with source analysis. However,
their underlying training for inverse solutions is based on sub-
optimal forward modeling. In this work, we propose a CNN
that is able to reconstruct EEG brain activity. To train our
proposed CNN, a skull-conductivity calibrated and white matter
anisotropic head model. Based on this model, we generate
simulated EEG data and used them to train our CNN. We
first evaluate the performance of our CNN using the simulated
EEG data while a realistic application with somatosensory
evoked potentials follows. From the results, we observed that the
CCN correctly localized the P20/N20 component at the subject-
specific Brodmann area 3b and it can potentially localize deeper
sources. A comparison is also presented with well-known inverse
solutions (single dipole scans and sLORETA) showing similar
localization performance. Through these results, an emerging
potential for real applications appears on the basis of realistic
head modeling.

I. INTRODUCTION

To perform Electroencephalography (EEG) or Magnetoen-
cephalography (MEG) source analysis, we need to solve the
forward problem which relies on the flow-estimation of the
electric field to the EEG or MEG sensors for a given brain
source. The next problem is the estimation of an inverse
solution for which we reconstruct the neuronal activity given
the original EEG or MEG data and the forward solution on
the basis of a three-dimensional geometry of the head.

The EEG/MEG forward solution has been proved to be
unique [3]. The most commonly used numerical techniques
that solve the forward problem are the Bounded Element
Method (BEM) [4] and Finite Element Method (FEM) [5].
In this study, we opted for FEM because of its high flexibility
to accurately model the electromagnetic field propagation
in geometrically challenging inhomogeneous and anisotropic
head volume conductors such as the human head [3].
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During the inverse solution, an endless number of source
and parameter configurations can yield the same EEG/MEG
measurements, characterizing the EEG/MEG inverse prob-
lem as ill-posed [2]. A wide range of inverse reconstructions
based on various a priori assumptions have been created.
These reconstructions are broadly classified as an equivalent
current dipole, current density reconstruction, beamforming,
and hierarchical Bayesian modeling [3]. In this work, Single
Dipole Scan [14] and sLORETA [15] are used for source
localization evaluations in additionally to our proposed so-
lution.

These two source localization techniques have been eval-
uated [2], but prior knowledge is important making the
problem laborious and posing also problems for real-time ap-
plications. Recently, Deep Learning methods have been pro-
posed to overcome these limitations. A Multi-Layer Percep-
tron(MLP) network [9] and various CNNs such as [7], [8].
Deep Learning has the potential to offer real-time source
localization. However, in these methods, no accurate and
realistic head modeling is used which can potentially lead
to suboptimal source reconstructions.

In this work, we propose a new finite-element-based
CNN architecture for source reconstruction of somatosensory
evoked potentials. We first create a number of simulated brain
source signals using an individually skull-conductivity cali-
brated and white-matter conductivity anisotropic head model.
For the specific head model, finite elements (geometrically
adapted hexahedrons) are used. We then train our proposed
CNN with input of the scalp topographies of the simulated
data and evaluate its performance with the localization error
for different levels of noise. Finally, we test our trained
model with real somatosensory evoked responses for the
localization of the P20/N20 component.

II. METHODS

A. EEG forward problem

The forward problem is concerned with the computation
of the channels measurements M ∈ RN given the moments
(magnitude and orientation) D ∈ Rp of the dipoles. Thus, it
can be expressed mathematically over time as [2]:

M = GD+ n (1)

where M ∈ RN×t, G ∈ RN×p is the leadfield matrix
which describes the flow of electrical current of each dipole
through every electrode, D ∈ Rp×t, and n is the noise of
the recording system.

Moreover, the EEG electrodes are located on the scalp
while the dipoles are inside the head. Therefore, a head



model is required which is a simulation of the geometrical
and electromagnetic features of the head. We utilized a six-
compartment head model [1]. The compartments and their
isotropic conductivities are skin 0.43 S/m , skull compacta
0.31S/m, skull spongiosa 0.01116S/m, cerebrospinal fluid
(CSF) 1.79 S/m, white and gray matter. The anisotropic
conductivity tensors for the compartments of gray and white
matter were determined in [1].

Based on the above-mentioned head model, a source space
with 50460 dipoles was created in [1]. The dipoles were
placed 2 mm far away from the neighbor compartment
(i.e., skull compacta or CSF) to fulfill the so-called “St.
Venant” condition [1]. Because our neural network could
not converge with this extremely detailed source space, we
down-sampled it to p = 10, 092 dipoles. A source space with
10, 092 sources is still more accurate than the ones that have
been used in the latest Deep Learning studies [7], [8], [9].
Moreover, we used an EEG recording system with N = 74
electrodes.

Finally, we utilized DUNEuro [6] in order to calculate the
leadfield matrix and thereby solve the forward problem with
the Finite Element Method (FEM).

B. Simulation of EEG snapshots

Having solved the forward problem, we can now proceed
to the solution of the inverse problem, that is, to estimate the
most possible source activity which could generate the scalp
EEG recordings. Since the inverse problem is solved using
a neural network, we must generate the training dataset. To
train a deep learning model and evaluate its performance,
we need to know the exact location and moment of the
underlying neural sources that give rise to the EEG data.

Our neural network is designed to operate on single-
time instances of EEG data with a single source. Thus, we
simulate the electrical activity as described in [7]. In partic-
ular, each simulation had one dipole cluster, which can be
thought of as a smooth area of brain activity. A dipole cluster
was created by randomly selecting a dipole in the source
space and then applying a region-growing approach. Starting
from a single seeding dipole, we recursively incorporated all
surrounding neighbors, resulting in a bigger source extent
with each iteration. The seed dipole was assigned to an
amplitude between 5 and 10 Nano-Ampere Meters (nAm).
The amplitude of adjacent dipoles was attenuated based on
their distance from the seed dipole. The attenuation followed
a Gaussian distribution N (0, distance from seed

2 ).
The simulated electric activation D ∈ Rp of p = 10, 092

dipoles was then projected to the leadfield matrix G ∈ RN×p

in order to calculate the potentials at the 74 EEG electrodes
M ∈ RN placed on the scalp. We now differ from the
approach of [7] and simulate the potentials of the EEG-
electrodes with the following procedure. To generate realistic
training data, we added Gaussian white noise at a specific
signal-to-noise ratio (SNR) level. The SNR is set based on
the power of the neural sources to be 15 dB:

SNR = 10 · log
(
Psignal

Pnoise

)
(2)

Fig. 1: Proposed CNN

where Psignal is the power of the simulated electric activation
and Pnoise is the power of the additive Gaussian noise
(unknown variable in the above equation). Finally, from
the simulated 74 channel measurements we create their
topography using FieldTrip [10]. With the aforementioned
algorithm, a set of 100, 000 training samples (electrical
currents of neural sources and their respective topographies)
were produced. Since each simulation contained one dipole
cluster, we produce single source EEG snapshots.

C. The finite-element-based CNN for EEG inverse source
reconstructions

The design and training of the proposed CNN (see Fig. 1
was accomplished using the Tensorflow [11] and Keras [12]
libraries. The proposed network takes as input an EEG
topography and predicts the electrical current of each dipole
in the source space. Thus, our CNN can be mathematically
described as:

Φ : R67×67 −→ R10092 (3)

The input topography passes through a two-dimensional
(2D)-Convolution layer with 8 filters that have a size of 2×2.
Furthermore, the output tensor g ∈ R65×65×8 is flattened
in order to traverse three fully connected layers with 1024
neurons each. Before each one of these three layers, there
are also Batch Normalization [13] and Dropout [13] layers.
Finally, each neuron of the output layer corresponds to a
dipole in the source space and as a result, our CNN predicts
the amplitude of each dipole.

We experimented with several loss functions for regression
problems but we ultimately decided to use the Mean absolute
error (MAE) (4) as it allowed a fast convergence of our
CNN compared to others. If y denotes the true values, ỹ the
predicted values, and N the length of both the vectors with
actual and predicted values, MAE can be mathematically
described as [13]:

L(y, ỹ) =
1

N

N∑
i=1

∣∣yi − ỹi
∣∣ (4)

Moreover, we opted for Rectified Linear Unit (ReLU) [13]
it has demonstrated superior performance in tests when
compared to alternative activation functions.

Finally, convolution filters, weights, and biases were op-
timized using the Stochastic Gradient Descent (SGD) al-
gorithm [13] with a learning rate λ = 0.001 and batch
size of 32. The proposed convolutional neural network was
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Fig. 2: Localization Error for various SNR levels

trained with 100, 000 simulated sources and their respective
topographies over 500 epochs in the Jetson AGX.

III. EVALUATION

We now evaluate the performance of our CNN and
compare it to state-of-the-art inverse algorithms, namely
sLORETA [15] and Singe Dipole Scan [14]. We assessed the
performance of the neural network using both simulated and
real EEG recordings. The localization error (LE) [16] is used
as a metric to quantify EEG source localization performance.
LE can be quantified as the Euclidean distance between truly
activated source rtrue and the reconstructed peak source rpeak
in three-dimensional source space:

LE = ||rtrue − rpeak||2 (5)

A. Evaluation for various SNR levels

We ran simulations with various SNR levels to measure
localization accuracy in several actual conditions. While our
CNN is trained with 15 dB SNR data, we used SNR levels
ranging from −10 dB to 20 dB in the evaluation. For each
SNR level, 5, 000 samples (EEG and sources data) were
simulated. The localization error for each SNR level is shown
in Fig. 2. Our CNN outperformed traditional methods at high
SNR levels but performed worse at low SNR levels (< −7.5
dB).

B. Influence of the depth of the simulated source

The effect of the source’s depth is investigated. The larger
the depth of the seed dipole, the less it influences the
EEG signal which results in more difficult localization. We
compared the performance of the inverse methods for all
the depths in the source space and different SNR levels
(see Fig. 3). Another finding is that our CNN is capable to
correctly localizing even deep sources. In particular, while
Dipole Scan has the worst localization results and strongly
depends on the depth of the source, both our CNN and
sLORETA slightly depend on the depth of the source cluster.
Furthermore, for all Signal-to-noise ratios, our CNN yields
less localization error over the spectrum of the depths.
Finally, as expected, as the SNR increases the dependence
of the localization methods on the depth of the neural source
decrease and thereby they yield better results.

C. Evaluation with real data

To realistically evaluate the performance of the inverse
methods, we used real EEG recordings. They are adapted
from [1] and they can be found here [17]. As described
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Fig. 3: Localization Error for various SNR levels and depths

(a) Our CNN

(b) sLORETA

(c) Dipole Scan

Fig. 4: Source Localization with real EEG data

in [1], Somatosensory evoked potentials (SEP) were acquired
using 80 AgCl sintered ring electrodes (EASYCAP GmbH,
Herrsching, Germany, 74 EEG channels plus additional six
channels to detect eye movements). The median nerve at
the right wrist of five right-handed healthy subjects was
stimulated with monophasic square-wave electrical pulses
having a duration of 0.5 ms.

Having preprocessed with FieldTrip [10] the Somatosen-
sory evoked potentials, we localized them with all the inverse
methods. The localizations projected on the MRI of the
subject are shown in Fig. 4.

Principally, in real EEG recordings, as opposed to simu-
lated ones, we cannot know the location of the dipole cluster
that gave rise to the recorded EEG signal. Therefore, we
cannot use the localization error to quantify the performance
of the inverse methods. However, the EEG recordings were
generated by a very specific experiment with particular
parameters, and many studies [18], [19] verify that this type
of stimulus is localized in the Primary Somatosensory Cortex
(S1).

It can be seen from Fig. 4 that both our neural network
and Dipole Scan correctly localize the SEP to the S1, while



sLORETA estimates inaccurately a deeper location.

IV. DISCUSSION & FUTURE DIRECTIONS

In this study, we propose a CNN for EEG source local-
ization. Initially, to model realistically the geometrical and
electromagnetic features of the head, we solve the forward
problem using a six-compartment head model based on [1].
Having calculated the leadfield matrix, we simulate EEG
recordings and their respective electric activations in the
source space. Moreover, we train our model using the electric
activations as target data and their corresponding topogra-
phies as input. Finally, we access the accuracy and robustness
of the proposed network with both real and simulated EEG
data.

Within the limited scope of our experiments, our approach
seems to compare very favorably to well-known inverse
methods. The results in the simulated data suggest that
our model appears reasonable localizations compared to
sLORETA and dipole scans. Even though our CNN is trained
with 15 dB SNR data, it can correctly localize EEG data
in a wide range of SNR levels (see Fig. 2). Moreover,
by comparison with the sLORETA and Single Dipole Scan
methods, is less dependent and almost independent (for high
SNR levels) on the source depth (see Fig. 3). Eventually, our
CNN has the generalization ability to correctly localize the
somatosensory evoked potentials to S1 (see Fig. 4).

However, our method despite the advantages comes with
limitations. First of all, the orientations of the dipoles in the
head model are not estimated. Furthermore, our approach is
under the assumption that brain activity is always smooth. As
a future solution is to generate a proportion of the training
data with Random Markov Fields while the rest of them
could follow a Gaussian distribution. Moreover, our model
is not trained to localize EEG data in a distributed dipole
model with more than one source. We intend to expand
our method in order to resolve this issue if each simulation
contains more than one dipole cluster. Also, our method was
only applied to physiological data (i.e. SEP) and still, the
localization performance on pathological activity towards an
automotive biomarker [21] is questionable. Thus, in the near
future, we intend to evaluate the network with pathological
brain activity. Finally, our method is not independent of the
source space and the anatomy of the brain as it is under the
assumption that all source spaces have 10, 092 dipoles.

We now compare our model with ConvDip [7], ESBN [9]
and DeepMeg [8] in terms of forward modeling and ar-
chitecture. ConvDip [7] and ESBN [9] use relatively small
source spaces with 5124 and 1024 dipoles respectively, while
our model and DeepMeg [8] have learned to localize data
in 10092 and 15002 dipoles respectively. Moreover, our
model and ESBN [9] solved the forward problem using
FEM, whereas ConvDip [7] using BEM and DeepMeg [8]
using BrainStorm [20]. All neural networks, except Deep-
Meg [8] which predicts the location(s) of the electric activa-
tion(s), estimate the amplitude of each dipole. Furthermore,
DeepMeg [8] and ESBN [9] take as input the channel
measurements while our CNN and ConvDip [7] take the

topography generated from the EEG electrodes. Finally, our
CNN, ConvDip [7] and ESBN [9] have correctly localized
real EEG recordings.

We showed that our CNN is capable to localize EEG
recordings in a realistic anatomy. Thus, our CNN is a
promising inverse solver and with enough future expansions,
it could potentially pave the way for real-time source local-
ization.
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