Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

SCI Publications

2022


M. Alirezaei, T. Tasdizen. “Adversarially Robust Classification by Conditional Generative Model Inversion,” Subtitled “arXiv preprint arXiv:2201.04733,” 2022.

ABSTRACT

Most adversarial attack defense methods rely on obfuscating gradients. These methods are successful in defending against gradient-based attacks; however, they are easily circumvented by attacks which either do not use the gradient or by attacks which approximate and use the corrected gradient. Defenses that do not obfuscate gradients such as adversarial training exist, but these approaches generally make assumptions about the attack such as its magnitude. We propose a classification model that does not obfuscate gradients and is robust by construction without assuming prior knowledge about the attack. Our method casts classification as an optimization problem where we "invert" a conditional generator trained on unperturbed, natural images to find the class that generates the closest sample to the query image. We hypothesize that a potential source of brittleness against adversarial attacks is the high-to-low-dimensional nature of feed-forward classifiers which allows an adversary to find small perturbations in the input space that lead to large changes in the output space. On the other hand, a generative model is typically a low-to-high-dimensional mapping. While the method is related to Defense-GAN, the use of a conditional generative model and inversion in our model instead of the feed-forward classifier is a critical difference. Unlike Defense-GAN, which was shown to generate obfuscated gradients that are easily circumvented, we show that our method does not obfuscate gradients. We demonstrate that our model is extremely robust against black-box attacks and has improved robustness against white-box attacks compared to naturally trained, feed-forward classifiers.



T. M. Athawale, D. Maljovec. L. Yan, C. R. Johnson, V. Pascucci, B. Wang. “Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 28, No. 4, pp. 1955-1966. April, 2022.
ISSN: 1077-2626
DOI: 10.1109/TVCG.2020.3022359

ABSTRACT

Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps – the probabilistic map , the significance map , and the survival map – to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.



J. Baker, E. Cherkaev, A. Narayan, B. Wang. “Learning POD of Complex Dynamics Using Heavy-ball Neural ODEs,” Subtitled “arXiv:2202.12373,” 2022.

ABSTRACT

Proper orthogonal decomposition (POD) allows reduced-order modeling of complex dynamical systems at a substantial level, while maintaining a high degree of accuracy in modeling the underlying dynamical systems. Advances in machine learning algorithms enable learning POD-based dynamics from data and making accurate and fast predictions of dynamical systems. In this paper, we leverage the recently proposed heavy-ball neural ODEs (HBNODEs) [Xia et al. NeurIPS, 2021] for learning data-driven reduced-order models (ROMs) in the POD context, in particular, for learning dynamics of time-varying coefficients generated by the POD analysis on training snapshots generated from solving full order models. HBNODE enjoys several practical advantages for learning POD-based ROMs with theoretical guarantees, including 1) HBNODE can learn long-term dependencies effectively from sequential observations and 2) HBNODE is computationally efficient in both training and testing. We compare HBNODE with other popular ROMs on several complex dynamical systems, including the von Kármán Street flow, the Kurganov-Petrova-Popov equation, and the one-dimensional Euler equations for fluids modeling.



J. Baker, H. Xia, Y. Wang, E. Cherkaev, A. Narayan, L. Chen, J. Xin, A. L. Bertozzi, S. J. Osher, B. Wang. “Proximal Implicit ODE Solvers for Accelerating Learning Neural ODEs,” Subtitled “arXiv preprint arXiv:2204.08621,” 2022.

ABSTRACT

Learning neural ODEs often requires solving very stiff ODE systems, primarily using explicit adaptive step size ODE solvers. These solvers are computationally expensive, requiring the use of tiny step sizes for numerical stability and accuracy guarantees. This paper considers learning neural ODEs using implicit ODE solvers of different orders leveraging proximal operators. The proximal implicit solver consists of inner-outer iterations: the inner iterations approximate each implicit update step using a fast optimization algorithm, and the outer iterations solve the ODE system over time. The proximal implicit ODE solver guarantees superiority over explicit solvers in numerical stability and computational efficiency. We validate the advantages of proximal implicit solvers over existing popular neural ODE solvers on various challenging benchmark tasks, including learning continuous-depth graph neural networks and continuous normalizing flows.



J. A. Bergquist, J. Coll-Font, B. Zenger, L. C. Rupp, W. W. Good, D. H. Brooks, R. S. MacLeod. “Reconstruction of cardiac position using body surface potentials,” In Computers in Biology and Medicine, Vol. 142, pp. 105174. 2022.
DOI: https://doi.org/10.1016/j.compbiomed.2021.105174

ABSTRACT

Electrocardiographic imaging (ECGI) is a noninvasive technique to assess the bioelectric activity of the heart which has been applied to aid in clinical diagnosis and management of cardiac dysfunction. ECGI is built on mathematical models that take into account several patient specific factors including the position of the heart within the torso. Errors in the localization of the heart within the torso, as might arise due to natural changes in heart position from respiration or changes in body position, contribute to errors in ECGI reconstructions of the cardiac activity, thereby reducing the clinical utility of ECGI. In this study we present a novel method for the reconstruction of cardiac geometry utilizing noninvasively acquired body surface potential measurements. Our geometric correction method simultaneously estimates the cardiac position over a series of heartbeats by leveraging an iterative approach which alternates between estimating the cardiac bioelectric source across all heartbeats and then estimating cardiac positions for each heartbeat. We demonstrate that our geometric correction method is able to reduce geometric error and improve ECGI accuracy in a wide range of testing scenarios. We examine the performance of our geometric correction method using different activation sequences, ranges of cardiac motion, and body surface electrode configurations. We find that after geometric correction resulting ECGI solution accuracy is improved and variability of the ECGI solutions between heartbeats is substantially reduced.



M. Berzins. “Energy conservation and accuracy of some MPM formulations,” In Computational Particle Mechanics, 2022.
DOI: 10.1007/s40571-021-00457-3

ABSTRACT

The success of the Material Point Method (MPM) in solving many challenging problems nevertheless raises some open questions regarding the fundamental properties of the method such as time integration accuracy and energy conservation. The traditional MPM time integration methods are often based upon the symplectic Euler method or staggered central differences. This raises the question of how to best ensure energy conservation in explicit time integration for MPM. Two approaches are used here, one is to extend the Symplectic Euler method (Cromer Euler) to provide better energy conservation and the second is to use a potentially more accurate symplectic methods, namely the widely-used Stormer-Verlet Method. The Stormer-Verlet method is shown to have locally third order time accuracy of energy conservation in time, in contrast to the second order accuracy in energy conservation of the symplectic Euler methods that are used in many MPM calculations. It is shown that there is an extension to the Symplectic Euler stress-last method that provides better energy conservation that is comparable with the Stormer-Verlet method. This extension is referred to as TRGIMP and also has third order accuracy in energy conservation. When the interactions between space and time errors are studied it is seen that spatial errors may dominate in computed quantities such as displacement and velocity. This connection between the local errors in space and time is made explicit mathematically and explains the observed results that displacement and velocity errors are very similar for both methods. The observed and theoretically predicted third-order energy conservation accuracy and computational costs are demonstrated on a standard MPM test example.



M. Berzins. “Computational Error Estimation for The Material Point Method,” 2022.

ABSTRACT

A common feature of many methods in computational mechanics is that there is often a way of estimating the error in the computed solution. The situation for computational mechanics codes based upon the Material Point Method is very different in that there has been comparatively little work on computable error estimates for these methods. This work is concerned with introducing such an approach for the Material Point Method. Although it has been observed that spatial errors may dominate temporal ones at stable time steps, recent work has made more precise the sources and forms of the different MPM errors. There is then a need to estimate these errors computationally through computable estimates of the different errors in the material point method. Estimates of the different spatial errors in the Material Point Method are constructed based upon nodal derivatives of the different physical variables in MPM. These derivatives are then estimated using standard difference approximations calculated on the background mesh. The use of these estimates of the spatial error makes it possible to measure the growth of errors over time. A number of computational experiments are used to illustrate the performance of the computed error estimates. As the key feature of the approach is the calculation of derivatives on the regularly spaced background mesh, the extension to calculating derivatives and hence to error estimates for higher dimensional problems is clearly possible.



M. K. Bruce, W. Tao, J. Beiriger, C. Christensen, M. J. Pfaff, R. Whitaker, J. A. Goldstein. “3D Photography to Quantify the Severity of Metopic Craniosynostosis,” In The Cleft Palate-Craniofacial Journal, SAGE Publications, 2022.

ABSTRACT

Objective

This study aims to determine the utility of 3D photography for evaluating the severity of metopic craniosynostosis (MCS) using a validated, supervised machine learning (ML) algorithm.

Design/Setting/Patients

This single-center retrospective cohort study included patients who were evaluated at our tertiary care center for MCS from 2016 to 2020 and underwent both head CT and 3D photography within a 2-month period.
Main Outcome Measures

The analysis method builds on our previously established ML algorithm for evaluating MCS severity using skull shape from CT scans. In this study, we regress the model to analyze 3D photographs and correlate the severity scores from both imaging modalities.
Results

14 patients met inclusion criteria, 64.3% male (n = 9). The mean age in years at 3D photography and CT imaging was 0.97 and 0.94, respectively. Ten patient images were obtained preoperatively, and 4 patients did not require surgery. The severity prediction of the ML algorithm correlates closely when comparing the 3D photographs to CT bone data (Spearman correlation coefficient [SCC] r = 0.75; Pearson correlation coefficient [PCC] r = 0.82).

Conclusion

The results of this study show that 3D photography is a valid alternative to CT for evaluation of head shape in MCS. Its use will provide an objective, quantifiable means of assessing outcomes in a rigorous manner while decreasing radiation exposure in this patient population.



H. Dai, M. Bauer, P.T. Fletcher, S.C. Joshi. “Deep Learning the Shape of the Brain Connectome,” Subtitled “arXiv preprint arXiv:2203.06122, 2022,” 2022.

ABSTRACT

To statistically study the variability and differences between normal and abnormal brain connectomes, a mathematical model of the neural connections is required. In this paper, we represent the brain connectome as a Riemannian manifold, which allows us to model neural connections as geodesics. We show for the first time how one can leverage deep neural networks to estimate a Riemannian metric of the brain that can accommodate fiber crossings and is a natural modeling tool to infer the shape of the brain from DWMRI. Our method achieves excellent performance in geodesic-white-matter-pathway alignment and tackles the long-standing issue in previous methods: the inability to recover the crossing fibers with high fidelity.



M. Grant, M. R. Kunz, K. Iyer, L. I. Held, T. Tasdizen, J. A. Aguiar, P. P. Dholabhai. “Integrating atomistic simulations and machine learning to design multi-principal element alloys with superior elastic modulus,” In Journal of Materials Research, Springer International Publishing, pp. 1--16. 2022.

ABSTRACT

Multi-principal element, high entropy alloys (HEAs) are an emerging class of materials that have found applications across the board. Owing to the multitude of possible candidate alloys, exploration and compositional design of HEAs for targeted applications is challenging since it necessitates a rational approach to identify compositions exhibiting enriched performance. Here, we report an innovative framework that integrates molecular dynamics and machine learning to explore a large chemical-configurational space for evaluating elastic modulus of equiatomic and non-equiatomic HEAs along primary crystallographic directions. Vital thermodynamic properties and machine learning features have been incorporated to establish fundamental relationships correlating Young’s modulus with Gibbs free energy, valence electron concentration, and atomic size difference. In HEAs, as the number of elements increases …



J. Gu, P. Davis, G. Eisenhauer, W. Godoy, A. Huebl, S. Klasky, M. Parashar, N. Podhorszki, F. Poeschel, J. Vay, L. Wan, R. Wang, K. Wu. “Organizing Large Data Sets for Efficient Analyses on HPC Systems,” In Journal of Physics: Conference Series, Vol. 2224, No. 1, IOP Publishing, pp. 012042. 2022.

ABSTRACT

Upcoming exascale applications could introduce significant data management challenges due to their large sizes, dynamic work distribution, and involvement of accelerators such as graphical processing units, GPUs. In this work, we explore the performance of reading and writing operations involving one such scientific application on two different supercomputers. Our tests showed that the Adaptable Input and Output System, ADIOS, was able to achieve speeds over 1TB/s, a significant fraction of the peak I/O performance on Summit. We also demonstrated the querying functionality in ADIOS could effectively support common selective data analysis operations, such as conditional histograms. In tests, this query mechanism was able to reduce the execution time by a factor of five. More importantly, ADIOS data management framework allows us to achieve these performance improvements with only a minimal amount …



M. Han, S. Sane, C. R. Johnson. “Exploratory Lagrangian-Based Particle Tracing Using Deep Learning,” In Journal of Flow Visualization and Image Processing, Begell, 2022.
DOI: 10.1615/JFlowVisImageProc.2022041197

ABSTRACT

Time-varying vector fields produced by computational fluid dynamics simulations are often prohibitively large and pose challenges for accurate interactive analysis and exploration. To address these challenges, reduced Lagrangian representations have been increasingly researched as a means to improve scientific time-varying vector field exploration capabilities. This paper presents a novel deep neural network-based particle tracing method to explore time-varying vector fields represented by Lagrangian flow maps. In our workflow, in situ processing is first utilized to extract Lagrangian flow maps, and deep neural networks then use the extracted data to learn flow field behavior. Using a trained model to predict new particle trajectories offers a fixed small memory footprint and fast inference. To demonstrate and evaluate the proposed method, we perform an in-depth study of performance using a well-known analytical data set, the Double Gyre. Our study considers two flow map extraction strategies, the impact of the number of training samples and integration durations on efficacy, evaluates multiple sampling options for training and testing, and informs hyperparameter settings. Overall, we find our method requires a fixed memory footprint of 10.5 MB to encode a Lagrangian representation of a time-varying vector field while maintaining accuracy. For post hoc analysis, loading the trained model costs only two seconds, significantly reducing the burden of I/O when reading data for visualization. Moreover, our parallel implementation can infer one hundred locations for each of two thousand new pathlines in 1.3 seconds using one NVIDIA Titan RTX GPU.



J.D. Hogue, R.M. Kirby, A. Narayan. “Dimensionality Reduction in Deep Learning via Kronecker Multi-layer Architectures,” Subtitled “arXiv:2204.04273,” 2022.

ABSTRACT

Deep learning using neural networks is an effective technique for generating models of complex data. However, training such models can be expensive when networks have large model capacity resulting from a large number of layers and nodes. For training in such a computationally prohibitive regime, dimensionality reduction techniques ease the computational burden, and allow implementations of more robust networks. We propose a novel type of such dimensionality reduction via a new deep learning architecture based on fast matrix multiplication of a Kronecker product decomposition; in particular our network construction can be viewed as a Kronecker product-induced sparsification of an "extended" fully connected network. Analysis and practical examples show that this architecture allows a neural network to be trained and implemented with a significant reduction in computational time and resources, while achieving a similar error level compared to a traditional feedforward neural network.



John Holmen. “Portable, Scalable Approaches For Improving Asynchronous Many-Task Runtime Node Use,” School of Computing, University of Utah, 2022.

ABSTRACT

This research addresses node-level scalability, portability, and heterogeneous computing challenges facing asynchronous many-task (AMT) runtime systems. These challenges have arisen due to increasing socket/core/thread counts and diversity among supported architectures on current and emerging high-performance computing (HPC) systems. This places greater emphasis on thread scalability and simultaneous use of diverse architectures to maximize node use and is complicated by architecture-specific programming models.

To reduce the exposure of application developers to such challenges, AMT programming models have emerged to offer a runtime-based solution. These models overdecompose a problem into many fine-grained tasks to be scheduled and executed by an underlying runtime to improve node-level concurrency. However, task execution granularity challenges remain, and it is unclear where and how shared memory programming models should be used within an AMT model to improve node use. This research aims to ease these design decisions with consideration for performance portability layers (PPLs), which provide a single interface to multiple shared memory programming models.
The contribution of this research is the design of a task scheduling approach for portably improving node use when extending AMT runtime systems to many-core and heterogeneous HPC systems with shared memory programming models. The success of this approach is shown through the portable adoption of a performance portability layer, Kokkos, within Uintah, a representative AMT runtime system. The resulting task scheduler enables the scheduling and execution of portable, fine-grained tasks across processors and accelerators simultaneously with flexible control over task execution granularity. A collection of experiments on current many-core and heterogeneous HPC systems are used to validate this approach and inform design recommendations. Among resulting recommendations are approaches for easing the adoption of a heterogeneous MPI+PPL task scheduling approach in an asynchronous many-task runtime system and furthermore to ease indirect adoption of a performance portability layer in large legacy codebases.



J.K. Holmen, D. Sahasrabudhe, M. Berzins. “Porting Uintah to Heterogeneous Systems,” In Proceedings of the Platform for Advanced Scientific Computing Conference (PASC22), ACM, 2022.

ABSTRACT

The Uintah Computational Framework is being prepared to make portable use of forthcoming exascale systems, initially the DOE Aurora system through the Aurora Early Science Program. This paper describes the evolution of Uintah to be ready for such architectures. A key part of this preparation has been the adoption of the Kokkos performance portability layer in Uintah. The sheer size of the Uintah codebase has made it imperative to have a representative benchmark. The design of this benchmark and the use of Kokkos within it is discussed. This paper complements recent work with additional details and new scaling studies run 24x further than earlier studies. Results are shown for two benchmarks executing workloads representative of typical Uintah applications. These results demonstrate single-source portability across the DOE Summit and NSF Frontera systems with good strong-scaling characteristics. The challenge of extending this approach to anticipated exascale systems is also considered.



V. Keshavarzzadeh, R.M. Kirby, A. Narayan. “Variational Inference for Nonlinear Inverse Problems via Neural Net Kernels: Comparison to Bayesian Neural Networks, Application to Topology Optimization,” Subtitled “arXiv:2205.03681,” 2022.

ABSTRACT

Inverse problems and, in particular, inferring unknown or latent parameters from data are ubiquitous in engineering simulations. A predominant viewpoint in identifying unknown parameters is Bayesian inference where both prior information about the parameters and the information from the observations via likelihood evaluations are incorporated into the inference process. In this paper, we adopt a similar viewpoint with a slightly different numerical procedure from standard inference approaches to provide insight about the localized behavior of unknown underlying parameters. We present a variational inference approach which mainly incorporates the observation data in a point-wise manner, i.e. we invert a limited number of observation data leveraging the gradient information of the forward map with respect to parameters, and find true individual samples of the latent parameters when the forward map is noise-free and one-to-one. For statistical calculations (as the ultimate goal in simulations), a large number of samples are generated from a trained neural network which serves as a transport map from the prior to posterior latent parameters. Our neural network machinery, developed as part of the inference framework and referred to as Neural Net Kernels (NNK), is based on hierarchical (deep) kernels which provide greater flexibility for training compared to standard neural networks. We showcase the effectiveness of our inference procedure in identifying bimodal and irregular distributions compared to a number of approaches including Markov Chain Monte Carlo sampling approaches and a Bayesian neural network approach.



Z. Liu, A. Narayan. “A Stieltjes algorithm for generating multivariate orthogonal polynomials,” Subtitled “arXiv preprint arXiv:2202.04843,” 2022.

ABSTRACT

Orthogonal polynomials of several variables have a vector-valued three-term recurrence relation, much like the corresponding one-dimensional relation. This relation requires only knowledge of certain recurrence matrices, and allows simple and stable evaluation of multivariate orthogonal polynomials. In the univariate case, various algorithms can evaluate the recurrence coefficients given the ability to compute polynomial moments, but such a procedure is absent in multiple dimensions. We present a new Multivariate Stieltjes (MS) algorithm that fills this gap in the multivariate case, allowing computation of recurrence matrices assuming moments are available. The algorithm is essentially explicit in two and three dimensions, but requires the numerical solution to a non-convex problem in more than three dimensions. Compared to direct Gram-Schmidt-type orthogonalization, we demonstrate on several examples in up to three dimensions that the MS algorithm is far more stable, and allows accurate computation of orthogonal bases in the multivariate setting, in contrast to direct orthogonalization approaches.



Q. C. Nguyen, T. Belnap, P. Dwivedi, A. Hossein Nazem Deligani, A. Kumar, D. Li, R. Whitaker, J. Keralis, H. Mane, X. Yue, T. T. Nguyen, T. Tasdizen, K. D. Brunisholz. “Google Street View Images as Predictors of Patient Health Outcomes, 2017–2019,” In Big Data and Cognitive Computing, Vol. 6, No. 1, Multidisciplinary Digital Publishing Institute, 2022.

ABSTRACT

Collecting neighborhood data can both be time- and resource-intensive, especially across broad geographies. In this study, we leveraged 1.4 million publicly available Google Street View (GSV) images from Utah to construct indicators of the neighborhood built environment and evaluate their associations with 2017–2019 health outcomes of approximately one-third of the population living in Utah. The use of electronic medical records allows for the assessment of associations between neighborhood characteristics and individual-level health outcomes while controlling for predisposing factors, which distinguishes this study from previous GSV studies that were ecological in nature. Among 938,085 adult patients, we found that individuals living in communities in the highest tertiles of green streets and non-single-family homes have 10–27% lower diabetes, uncontrolled diabetes, hypertension, and obesity, but higher substance use disorders—controlling for age, White race, Hispanic ethnicity, religion, marital status, health insurance, and area deprivation index. Conversely, the presence of visible utility wires overhead was associated with 5–10% more diabetes, uncontrolled diabetes, hypertension, obesity, and substance use disorders. Our study found that non-single-family and green streets were related to a lower prevalence of chronic conditions, while visible utility wires and single-lane roads were connected with a higher burden of chronic conditions. These contextual characteristics can better help healthcare organizations understand the drivers of their patients’ health by further considering patients’ residential environments, which present both …



C. A. Nizinski, C. Ly, C. Vachet, A. Hagen, T. Tasdizen, L. W. McDonald. “Characterization of uncertainties and model generalizability for convolutional neural network predictions of uranium ore concentrate morphology,” In Chemometrics and Intelligent Laboratory Systems, Vol. 225, Elsevier, pp. 104556. 2022.
ISSN: 0169-7439
DOI: https://doi.org/10.1016/j.chemolab.2022.104556

ABSTRACT

As the capabilities of convolutional neural networks (CNNs) for image classification tasks have advanced, interest in applying deep learning techniques for determining the natural and anthropogenic origins of uranium ore concentrates (UOCs) and other unknown nuclear materials by their surface morphology characteristics has grown. But before CNNs can join the nuclear forensics toolbox along more traditional analytical techniques – such as scanning electron microscopy (SEM), X-ray diffractometry, mass spectrometry, radiation counting, and any number of spectroscopic methods – a deeper understanding of “black box” image classification will be required. This paper explores uncertainty quantification for convolutional neural networks and their ability to generalize to out-of-distribution (OOD) image data sets. For prediction uncertainty, Monte Carlo (MC) dropout and random image crops as variational inference techniques are implemented and characterized. Convolutional neural networks and classifiers using image features from unsupervised vector-quantized variational autoencoders (VQ-VAE) are trained using SEM images of pure, unaged, unmixed uranium ore concentrates considered “unperturbed.” OOD data sets are developed containing perturbations from the training data with respect to the chemical and physical properties of the UOCs or data collection parameters; predictions made on the perturbation sets identify where significant shortcomings exist in the current training data and techniques used to develop models for classifying uranium process history, and provides valuable insights into how datasets and classification models can be improved for better generalizability to out-of-distribution examples.



T.A.J. Ouermi, R.M. Kirby, M. Berzins. “ENO-Based High-Order Data-Bounded and Constrained Positivity-Preserving Interpolation,” Subtitled “https://arxiv.org/abs/2204.06168,” 2022.

ABSTRACT

A number of key scientific computing applications that are based upon tensor-product grid constructions, such as numerical weather prediction (NWP) and combustion simulations, require property-preserving interpolation. Essentially Non-Oscillatory (ENO) interpolation is a classic example of such interpolation schemes. In the aforementioned application areas, property preservation often manifests itself as a requirement for either data boundedness or positivity preservation. For example, in NWP, one may have to interpolate between the grid on which the dynamics is calculated to a grid on which the physics is calculated (and back). Interpolating density or other key physical quantities without accounting for property preservation may lead to negative values that are nonphysical and result in inaccurate representations and/or interpretations of the physical data. Property-preserving interpolation is straightforward when used in the context of low-order numerical simulation methods. High-order property-preserving interpolation is, however, nontrivial, especially in the case where the interpolation points are not equispaced. In this paper, we demonstrate that it is possible to construct high-order interpolation methods that ensure either data boundedness or constrained positivity preservation. A novel feature of the algorithm is that the positivity-preserving interpolant is constrained; that is, the amount by which it exceeds the data values may be strictly controlled. The algorithm we have developed comes with theoretical estimates that provide sufficient conditions for data boundedness and constrained positivity preservation. We demonstrate the application of our algorithm on a collection of 1D and 2D numerical examples, and show that in all cases property preservation is respected.