SCIENTIFIC COMPUTING AND IMAGING INSTITUTE
at the University of Utah

An internationally recognized leader in visualization, scientific computing, and image analysis

SCI Publications

2022


John Holmen. “Portable, Scalable Approaches For Improving Asynchronous Many-Task Runtime Node Use,” School of Computing, University of Utah, 2022.

ABSTRACT

This research addresses node-level scalability, portability, and heterogeneous computing challenges facing asynchronous many-task (AMT) runtime systems. These challenges have arisen due to increasing socket/core/thread counts and diversity among supported architectures on current and emerging high-performance computing (HPC) systems. This places greater emphasis on thread scalability and simultaneous use of diverse architectures to maximize node use and is complicated by architecture-specific programming models.

To reduce the exposure of application developers to such challenges, AMT programming models have emerged to offer a runtime-based solution. These models overdecompose a problem into many fine-grained tasks to be scheduled and executed by an underlying runtime to improve node-level concurrency. However, task execution granularity challenges remain, and it is unclear where and how shared memory programming models should be used within an AMT model to improve node use. This research aims to ease these design decisions with consideration for performance portability layers (PPLs), which provide a single interface to multiple shared memory programming models.
The contribution of this research is the design of a task scheduling approach for portably improving node use when extending AMT runtime systems to many-core and heterogeneous HPC systems with shared memory programming models. The success of this approach is shown through the portable adoption of a performance portability layer, Kokkos, within Uintah, a representative AMT runtime system. The resulting task scheduler enables the scheduling and execution of portable, fine-grained tasks across processors and accelerators simultaneously with flexible control over task execution granularity. A collection of experiments on current many-core and heterogeneous HPC systems are used to validate this approach and inform design recommendations. Among resulting recommendations are approaches for easing the adoption of a heterogeneous MPI+PPL task scheduling approach in an asynchronous many-task runtime system and furthermore to ease indirect adoption of a performance portability layer in large legacy codebases.



J.K. Holmen, D. Sahasrabudhe, M. Berzins. “Porting Uintah to Heterogeneous Systems,” In Proceedings of the Platform for Advanced Scientific Computing Conference (PASC22) Best Paper Award, ACM, 2022.

ABSTRACT

The Uintah Computational Framework is being prepared to make portable use of forthcoming exascale systems, initially the DOE Aurora system through the Aurora Early Science Program. This paper describes the evolution of Uintah to be ready for such architectures. A key part of this preparation has been the adoption of the Kokkos performance portability layer in Uintah. The sheer size of the Uintah codebase has made it imperative to have a representative benchmark. The design of this benchmark and the use of Kokkos within it is discussed. This paper complements recent work with additional details and new scaling studies run 24x further than earlier studies. Results are shown for two benchmarks executing workloads representative of typical Uintah applications. These results demonstrate single-source portability across the DOE Summit and NSF Frontera systems with good strong-scaling characteristics. The challenge of extending this approach to anticipated exascale systems is also considered.



Y. Ishidoya, E. Kwan, D. J. Dosdall, R. S. Macleod, L. Navaravong, B. A. Steinberg, T. J. Bunch, R. Ranjan. “Short-Term Natural Course of Esophageal Thermal Injury After Ablation for Atrial Fibrillation,” In Journal of Cardiovascular Electrophysiology, Wiley, 2022.
DOI: 10.1111/jce.15553

ABSTRACT

Purpose
To provide insight into the short-term natural history of esophageal thermal injury (ETI) after radiofrequency catheter ablation (RFCA) for atrial fibrillation (AF) by esophagogastroduodenoscopy (EGD).

Methods
We screened patients who underwent RFCA for AF and EGD based on esophageal late gadolinium enhancement (LGE) in post ablation MRI. Patients with ETI diagnosed with EGD were included. We defined severity of ETI according to Kansas City classification (KCC): type 1: erythema; type 2: ulcers (2a: superficial; 2b deep); type 3 perforation (3a: perforation; 3b: perforation with atrioesophageal fistula). Repeated EGD was performed within 1-14 days after the last EGD if recommended and possible until any certain healing signs (visible reduction in size without deepening of ETI or complete resolution) were observed.
Results
ETI was observed in 62 of 378 patients who underwent EGD after RFCA. Out of these 62 patients with ETI, 21% (13) were type 1, 50% (31) were type 2a and 29% (18) were type 2b at the initial EGD. All esophageal lesions, but one type 2b lesion that developed into an atrioesophageal fistula (AEF), showed signs of healing in repeated EGD studies within 14 days after the procedure. The one type 2b lesion developing into an AEF showed an increase in size and ulcer deepening in repeat EGD 8 days after the procedure.
Conclusion
We found that all ETI which didn't progress to AEF presented healing signs within 14 days after the procedure and that worsening ETI might be an early signal for developing esophageal perforation.



Y. Ishidoya, E. Kwan, D. J. Dosdall, R. S. Macleod, L. Navaravong, B. A. Steinberg, T. J. Bunch, R. Ranjan. “Shorter Distance Between The Esophagus And The Left Atrium Is Associated With Higher Rates Of Esophageal Thermal Injury After Radiofrequency Ablation,” In Journal of Cardiovascular Electrophysiology, Wiley, 2022.
DOI: 10.1111/jce.15554

ABSTRACT

Background
Esophageal thermal injury (ETI) is a known and potentially serious complication of catheter ablation for atrial fibrillation. We intended to evaluate the distance between the esophagus and the left atrium posterior wall (LAPW) and its association with esophageal thermal injury.

Methods
A retrospective analysis of 73 patients who underwent esophagogastroduodenoscopy (EGD) after LA radiofrequency catheter ablation for symptomatic atrial fibrillation and pre-ablation magnetic resonance imaging (MRI) was used to identify the minimum distance between the inner lumen of the esophagus and the ablated atrial endocardium (pre-ablation atrial esophageal distance; pre-AED) and occurrence of ETI. Parameters of ablation index (AI, Visitag Surpoint) were collected in 30 patients from the CARTO3 system and compared to assess if ablation strategies and AI further impacted risk of ETI.
Results
Pre-AED was significantly larger in patients without ETI than those with ETI (5.23 ± 0.96 mm vs 4.31 ± 0.75 mm, p < 0.001). Pre-AED showed high accuracy for predicting ETI with the best cutoff value of 4.37 mm. AI was statistically comparable between Visitag lesion markers with and without associated esophageal late gadolinium enhancement (LGE) detected by post-ablation MRI in the low-power long-duration ablation group (LPLD, 25-40W for 10 to 30 s, 393.16 [308.62, 408.86] versus 406.58 [364.38, 451.22], p = 0.16) and high-power short-duration group (HPSD, 50W for 5-10 s, 336.14 [299.66, 380.11] versus 330.54 [286.21, 384.71], p = 0.53), respectively.
Conclusion
Measuring the distance between the LA and the esophagus in pre-ablation LGE-MRI could be helpful in predicting ETI after LAPW ablation.



K. Iyer, A. Morris, B. Zenger, K. Karnath, B.A. Orkild, O. Korshak, S. Elhabian. “Statistical Shape Modeling of Biventricular Anatomy with Shared Boundaries,” Subtitled “arXiv:2209.02706v1,” 2022.

ABSTRACT

Statistical shape modeling (SSM) is a valuable and powerful tool to generate a detailed representation of complex anatomy that enables quantitative analysis and the comparison of shapes and their variations. SSM applies mathematics, statistics, and computing to parse the shape into a quantitative representation (such as correspondence points or landmarks) that will help answer various questions about the anatomical variations across the population. Complex anatomical structures have many diverse parts with varying interactions or intricate architecture. For example, the heart is a four-chambered anatomy with several shared boundaries between chambers. Coordinated and efficient contraction of the chambers of the heart is necessary to adequately perfuse end organs throughout the body. Subtle shape changes within these shared boundaries of the heart can indicate potential pathological changes that lead to uncoordinated contraction and poor end-organ perfusion. Early detection and robust quantification could provide insight into ideal treatment techniques and intervention timing. However, existing SSM approaches fall short of explicitly modeling the statistics of shared boundaries. In this paper, we present a general and flexible data-driven approach for building statistical shape models of multi-organ anatomies with shared boundaries that captures morphological and alignment changes of individual anatomies and their shared boundary surfaces throughout the population. We demonstrate the effectiveness of the proposed methods using a biventricular heart dataset by developing shape models that consistently parameterize the cardiac biventricular structure and the interventricular septum (shared boundary surface) across the population data.



M.H. Jensen, S. Joshi, S. Sommer. “Discrete-Time Observations of Brownian Motion on Lie Groups and Homogeneous Spaces: Sampling and Metric Estimation,” In Algorithms, Vol. 15, No. 8, 2022.
ISSN: 1999-4893
DOI: 10.3390/a15080290

ABSTRACT

We present schemes for simulating Brownian bridges on complete and connected Lie groups and homogeneous spaces. We use this to construct an estimation scheme for recovering an unknown left- or right-invariant Riemannian metric on the Lie group from samples. We subsequently show how pushing forward the distributions generated by Brownian motions on the group results in distributions on homogeneous spaces that exhibit a non-trivial covariance structure. The pushforward measure gives rise to new non-parametric families of distributions on commonly occurring spaces such as spheres and symmetric positive tensors. We extend the estimation scheme to fit these distributions to homogeneous space-valued data. We demonstrate both the simulation schemes and estimation procedures on Lie groups and homogenous spaces, including SPD(3)=GL+(3)/SO(3) and S2=SO(3)/SO(2).



X. Jiang, Z. Li, R. Missel, Md. Zaman, B. Zenger, W. W. Good, R. S. MacLeod, J. L. Sapp, L. Wang. “Few-Shot Generation of Personalized Neural Surrogates for Cardiac Simulation via Bayesian Meta-learning,” In Medical Image Computing and Computer Assisted Intervention -- MICCAI 2022, Springer Nature Switzerland, pp. 46--56. 2022.
ISBN: 978-3-031-16452-1
DOI: 10.1007/978-3-031-16452-1_5

ABSTRACT

Clinical adoption of personalized virtual heart simulations faces challenges in model personalization and expensive computation. While an ideal solution is an efficient neural surrogate that at the same time is personalized to an individual subject, the state-of-the-art is either concerned with personalizing an expensive simulation model, or learning an efficient yet generic surrogate. This paper presents a completely new concept to achieve personalized neural surrogates in a single coherent framework of meta-learning (metaPNS). Instead of learning a single neural surrogate, we pursue the process of learning a personalized neural surrogate using a small amount of context data from a subject, in a novel formulation of few-shot generative modeling underpinned by: 1) a set-conditioned neural surrogate for cardiac simulation that, conditioned on subject-specific context data, learns to generate query simulations not included in the context set, and 2) a meta-model of amortized variational inference that learns to condition the neural surrogate via simple feed-forward embedding of context data. As test time, metaPNS delivers a personalized neural surrogate by fast feed-forward embedding of a small and flexible number of data available from an individual, achieving -- for the first time -- personalization and surrogate construction for expensive simulations in one end-to-end learning framework. Synthetic and real-data experiments demonstrated that metaPNS was able to improve personalization and predictive accuracy in comparison to conventionally-optimized cardiac simulation models, at a fraction of computation.



X. Jiang, M. Toloubidokhti, J. Bergquist, B. Zenger, w. Good, R.S. MacLeod, L. Wang. “Improving Generalization by Learning Geometry-Dependent and Physics-Based Reconstruction of Image Sequences,” In IEEE Transactions on Medical Imaging, 2022.
DOI: 10.1109/TMI.2022.3218170

ABSTRACT

Deep neural networks have shown promise in image reconstruction tasks, although often on the premise of large amounts of training data. In this paper, we present a new approach to exploit the geometry and physics underlying electrocardiographic imaging (ECGI) to learn efficiently with a relatively small dataset. We first introduce a non-Euclidean encoding-decoding network that allows us to describe the unknown and measurement variables over their respective geometrical domains. We then explicitly model the geometry-dependent physics in between the two domains via a bipartite graph over their graphical embeddings. We applied the resulting network to reconstruct electrical activity on the heart surface from body-surface potentials. In a series of generalization tasks with increasing difficulty, we demonstrated the improved ability of the network to generalize across geometrical changes underlying the data using less than 10% of training data and fewer variations of training geometry in comparison to its Euclidean alternatives. In both simulation and real-data experiments, we further demonstrated its ability to be quickly fine-tuned to new geometry using a modest amount of data.



X. Jiang, J. Tate, J. Bergquist, A. Narayan, R. MacLeod, L. Wang. “Uncertainty Quantification of Cardiac Position on Deep Graph Network ECGI,” In Computing in Cardiology, Vol. 49, 2022.

ABSTRACT

Subject-specific geometry such as cardiac position and torso size plays an important role in electrocardiographic imaging (ECGI). Previously, we introduced a graph-based neural network (GNN) that is dependent on patient-specific geometry to improve reconstruction accuracy. However, geometric uncertainty, including changes in cardiac position and torso size, has not been addressed in network-based methods. In this study, we estimate geometrical uncertainty on GNN by applying uncertainty quantification with polynomial chaos emulators (PCE). To estimate the effect of geometric variation from common motions, we evaluated the model on samples generated by different heart torso geometries. The experiments shows that the GNN is less sensitive to heart position and torso shape and helps us direct development of similar models to account of possible variability.



R. Kamali, K. Gillete, J. Tate, D. A. Abhyankar, D. J. Dosdall, G. Plank, T. J. Bunch, R. S. Macleod & R. Ranjan . “Treatment Planning for Atrial Fibrillation Using Patient-Specific Models Showing the Importance of Fibrillatory-Areas,” In Annals of Biomedical Engineering, Springer, 2022.
DOI: https://doi.org/10.1007/s10439-022-03029-5

ABSTRACT

Computational models have made it possible to study the effect of fibrosis and scar on atrial fibrillation (AF) and plan future personalized treatments. Here, we study the effect of area available for fibrillatory waves to sustain AF. Then we use it to plan for AF ablation to improve procedural outcomes. CARPentry was used to create patient-specific models to determine the association between the size of residual contiguous areas available for AF wavefronts to propagate and sustain AF [fibrillatory area (FA)] after ablation with procedural outcomes. The FA was quantified in a novel manner accounting for gaps in ablation lines. We selected 30 persistent AF patients with known ablation outcomes. We divided the atrial surface into five areas based on ablation scar pattern and anatomical landmarks and calculated the FAs. We validated the models based on clinical outcomes and suggested future ablation lines that minimize the FAs and terminate rotor activities in simulations. We also simulated the effects of three common antiarrhythmic drugs. In the patient-specific models, the predicted arrhythmias matched the clinical outcomes in 25 of 30 patients (accuracy 83.33%). The average largest FA (FAmax) in the recurrence group was 8517 ± 1444 vs. 6772 ± 1531 mm2 in the no recurrence group (p < 0.004). The final FAs after adding the suggested ablation lines in the AF recurrence group reduced the average FAmax from 8517 ± 1444 to 6168 ± 1358 mm2 (p < 0.001) and stopped the sustained rotor activity. Simulations also correctly anticipated the effect of antiarrhythmic drugs in 5 out of 6 patients who used drug therapy post unsuccessful ablation (accuracy 83.33%). Sizes of FAs available for AF wavefronts to propagate are important determinants for ablation outcomes. FA size in combination with computational simulations can be used to direct ablation in persistent AF to minimize the critical mass required to sustain recurrent AF.



V. Keshavarzzadeh, R.M. Kirby, A. Narayan. “Variational Inference for Nonlinear Inverse Problems via Neural Net Kernels: Comparison to Bayesian Neural Networks, Application to Topology Optimization,” Subtitled “arXiv:2205.03681,” 2022.

ABSTRACT

Inverse problems and, in particular, inferring unknown or latent parameters from data are ubiquitous in engineering simulations. A predominant viewpoint in identifying unknown parameters is Bayesian inference where both prior information about the parameters and the information from the observations via likelihood evaluations are incorporated into the inference process. In this paper, we adopt a similar viewpoint with a slightly different numerical procedure from standard inference approaches to provide insight about the localized behavior of unknown underlying parameters. We present a variational inference approach which mainly incorporates the observation data in a point-wise manner, i.e. we invert a limited number of observation data leveraging the gradient information of the forward map with respect to parameters, and find true individual samples of the latent parameters when the forward map is noise-free and one-to-one. For statistical calculations (as the ultimate goal in simulations), a large number of samples are generated from a trained neural network which serves as a transport map from the prior to posterior latent parameters. Our neural network machinery, developed as part of the inference framework and referred to as Neural Net Kernels (NNK), is based on hierarchical (deep) kernels which provide greater flexibility for training compared to standard neural networks. We showcase the effectiveness of our inference procedure in identifying bimodal and irregular distributions compared to a number of approaches including Markov Chain Monte Carlo sampling approaches and a Bayesian neural network approach.



D. Klotzl, T. Krake, Y. Zhou, I. Hotz, B. Wang, D. Weiskopf. “Local Bilinear Computation of Jacobi Sets,” In The Visual Computer, 2022.

ABSTRACT

We propose a novel method for the computation of Jacobi sets in 2D domains. The Jacobi set is a topological descriptor based on Morse theory that captures gradient alignments among multiple scalar fields, which is useful for multi-field visualization. Previous Jacobi set computations use piecewise linear approximations on triangulations that result in discretization artifacts like zig-zag patterns. In this paper, we utilize a local bilinear method to obtain a more precise approximation of Jacobi sets by preserving the topology and improving the geometry. Consequently, zig-zag patterns on edges are avoided, resulting in a smoother Jacobi set representation. Our experiments show a better convergence with increasing resolution compared to the piecewise linear method. We utilize this advantage with an efficient local subdivision scheme. Finally, our approach is evaluated qualitatively and quantitatively in comparison with previous methods for different mesh resolutions and across a number of synthetic and real-world examples.



D. Klötzl, T. Krake, Y. Zhou, J. Stober, K. Schulte, I. Hotz, B. Wang, D. Weiskopf. “Reduced Connectivity for Local Bilinear Jacobi Sets,” Subtitled “arXiv:2208.07148,” 2022.

ABSTRACT

We present a new topological connection method for the local bilinear computation of Jacobi sets that improves the visual representation while preserving the topological structure and geometric configuration. To this end, the topological structure of the local bilinear method is utilized, which is given by the nerve complex of the traditional piecewise linear method. Since the nerve complex consists of higher-dimensional simplices, the local bilinear method (visually represented by the 1-skeleton of the nerve complex) leads to clutter via crossings of line segments. Therefore, we propose a homotopy-equivalent representation that uses different collapses and edge contractions to remove such artifacts. Our new connectivity method is easy to implement, comes with only little overhead, and results in a less cluttered representation.



R. Lanfredi, J.D. Schroeder, T. Tasdizen. “Localization supervision of chest x-ray classifiers using label-specific eye-tracking annotation,” Subtitled “arXiv:2207.09771,” 2022.

ABSTRACT

Convolutional neural networks (CNNs) have been successfully applied to chest x-ray (CXR) images. Moreover, annotated bounding boxes have been shown to improve the interpretability of a CNN in terms of localizing abnormalities. However, only a few relatively small CXR datasets containing bounding boxes are available, and collecting them is very costly. Opportunely, eye-tracking (ET) data can be collected in a non-intrusive way during the clinical workflow of a radiologist. We use ET data recorded from radiologists while dictating CXR reports to train CNNs. We extract snippets from the ET data by associating them with the dictation of keywords and use them to supervise the localization of abnormalities. We show that this method improves a model's interpretability without impacting its image-level classification.



D. Lange, S. Sahai, J.M. Phillips, A. Lex. “Ferret: Reviewing Tabular Datasets for Manipulation,” Subtitled “OSF Preprint,” 2022.

ABSTRACT

How do we ensure the veracity of science? The act of manipulating or fabricating scientific data has led to many high-profile fraud cases and retractions. Detecting manipulated data, however, is a challenging and time-consuming endeavor. Automated detection methods are limited due to the diversity of data types and manipulation techniques. Furthermore, patterns automatically flagged as suspicious can have reasonable explanations. Instead, we propose a nuanced approach where experts analyze tabular datasets, eg, as part of the peer-review process, using a guided, interactive visualization approach. In this paper, we present an analysis of how manipulated datasets are created and the artifacts these techniques generate. Based on these findings, we propose a suite of visualization methods to surface potential irregularities. We have implemented these methods in Ferret, a visualization tool for data forensics work. Ferret makes potential data issues salient and provides guidance on spotting signs of tampering and differentiating them from truthful data.



Z. Li, S. Liu, X. Yu, K. Bhavya, J. Cao, J. Diffenderfer, P.T. Bremer, V. Pascucci. ““Understanding Robustness Lottery”: A Comparative Visual Analysis of Neural Network Pruning Approaches,” Subtitled “arXiv preprint arXiv:2206.07918,” 2022.

ABSTRACT

Deep learning approaches have provided state-of-the-art performance in many applications by relying on extremely large and heavily overparameterized neural networks. However, such networks have been shown to be very brittle, not generalize well to new uses cases, and are often difficult if not impossible to deploy on resources limited platforms. Model pruning, i.e., reducing the size of the network, is a widely adopted strategy that can lead to more robust and generalizable network -- usually orders of magnitude smaller with the same or even improved performance. While there exist many heuristics for model pruning, our understanding of the pruning process remains limited. Empirical studies show that some heuristics improve performance while others can make models more brittle or have other side effects. This work aims to shed light on how different pruning methods alter the network's internal feature representation, and the corresponding impact on model performance. To provide a meaningful comparison and characterization of model feature space, we use three geometric metrics that are decomposed from the common adopted classification loss. With these metrics, we design a visualization system to highlight the impact of pruning on model prediction as well as the latent feature embedding. The proposed tool provides an environment for exploring and studying differences among pruning methods and between pruned and original model. By leveraging our visualization, the ML researchers can not only identify samples that are fragile to model pruning and data corruption but also obtain insights and explanations on how some pruned …



S. Li, R.M. Kirby, S. Zhe. “Decomposing Temporal High-Order Interactions via Latent ODEs,” In Proceedings of the 39 th International Conference on Machine Learning, 2022.

ABSTRACT

High-order interactions between multiple objects are common in real-world applications. Although tensor decomposition is a popular framework for high-order interaction analysis and prediction, most methods cannot well exploit the valuable timestamp information in data. The existent methods either discard the timestamps or convert them into discrete steps or use over-simplistic decomposition models. As a result, these methods might not be capable enough of capturing complex, finegrained temporal dynamics or making accurate predictions for long-term interaction results. To overcome these limitations, we propose a novel Temporal High-order Interaction decompoSition model based on Ordinary Differential Equations (THIS-ODE). We model the time-varying interaction result with a latent ODE. To capture the complex temporal dynamics, we use a neural network (NN) to learn the time derivative of the ODE state. We use the representation of the interaction objects to model the initial value of the ODE and to constitute a part of the NN input to compute the state. In this way, the temporal relationships of the participant objects can be estimated and encoded into their representations. For tractable and scalable inference, we use forward sensitivity analysis to efficiently compute the gradient of ODE state, based on which we use integral transform to develop a stochastic mini-batch learning algorithm. We demonstrate the advantage of our approach in simulation and four real-world applications.



S. Li, Z Wang, R.M. Kirby, S. Zhe. “Infinite-Fidelity Coregionalization for Physical Simulation,” Subtitled “arXiv:2207.00678,” 2022.

ABSTRACT

Multi-fidelity modeling and learning are important in physical simulation-related applications. It can leverage both low-fidelity and high-fidelity examples for training so as to reduce the cost of data generation while still achieving good performance. While existing approaches only model finite, discrete fidelities, in practice, the fidelity choice is often continuous and infinite, which can correspond to a continuous mesh spacing or finite element length. In this paper, we propose Infinite Fidelity Coregionalization (IFC). Given the data, our method can extract and exploit rich information within continuous, infinite fidelities to bolster the prediction accuracy. Our model can interpolate and/or extrapolate the predictions to novel fidelities, which can be even higher than the fidelities of training data. Specifically, we introduce a low-dimensional latent output as a continuous function of the fidelity and input, and multiple it with a basis matrix to predict high-dimensional solution outputs. We model the latent output as a neural Ordinary Differential Equation (ODE) to capture the complex relationships within and integrate information throughout the continuous fidelities. We then use Gaussian processes or another ODE to estimate the fidelity-varying bases. For efficient inference, we reorganize the bases as a tensor, and use a tensor-Gaussian variational posterior to develop a scalable inference algorithm for massive outputs. We show the advantage of our method in several benchmark tasks in computational physics.



Z. Li, T. Sun, H. Wang, B. Wang. “Adaptive and Implicit Regularization for Matrix Completion,” Subtitled “arXiv preprint arXiv:2208.05640,” 2022.

ABSTRACT

The explicit low-rank regularization, e.g., nuclear norm regularization, has been widely used in imaging sciences. However, it has been found that implicit regularization outperforms explicit ones in various image processing tasks. Another issue is that the fixed explicit regularization limits the applicability to broad images since different images favor different features captured by different explicit regularizations. As such, this paper proposes a new adaptive and implicit low-rank regularization that captures the low-rank prior dynamically from the training data. The core of our new adaptive and implicit low-rank regularization is parameterizing the Laplacian matrix in the Dirichlet energy-based regularization, which we call the regularization AIR. Theoretically, we show that the adaptive regularization of AIR enhances the implicit regularization and vanishes at the end of training. We validate AIR’s effectiveness on various benchmark tasks, indicating that the AIR is particularly favorable for the scenarios when the missing entries are non-uniform. The code can be found at https://github.com/lizhemin15/AIR-Net.



S. Li, J.M. Phillips, X. Yu, R.M. Kirby, S. Zhe. “Batch Multi-Fidelity Active Learning with Budget Constraints,” Subtitled “arXiv:2210.12704v1,” 2022.

ABSTRACT

Learning functions with high-dimensional outputs is critical in many applications, such as physical simulation and engineering design. However, collecting training examples for these applications is often costly, e.g. by running numerical solvers. The recent work (Li et al., 2022) proposes the first multi-fidelity active learning approach for high-dimensional outputs, which can acquire examples at different fidelities to reduce the cost while improving the learning performance. However, this method only queries at one pair of fidelity and input at a time, and hence has a risk to bring in strongly correlated examples to reduce the learning efficiency. In this paper, we propose Batch Multi-Fidelity Active Learning with Budget Constraints (BMFAL-BC), which can promote the diversity of training examples to improve the benefit-cost ratio, while respecting a given budget constraint for batch queries. Hence, our method can be more practically useful. Specifically, we propose a novel batch acquisition function that measures the mutual information between a batch of multi-fidelity queries and the target function, so as to penalize highly correlated queries and encourages diversity. The optimization of the batch acquisition function is challenging in that it involves a combinatorial search over many fidelities while subject to the budget constraint. To address this challenge, we develop a weighted greedy algorithm that can sequentially identify each (fidelity, input) pair, while achieving a near -approximation of the optimum. We show the advantage of our method in several computational physics and engineering applications.