SCI Publications
2017
W. Usher, P. Klacansky, F. Federer, P. T. Bremer, A. Knoll, J. Yarch, A. Angelucci, V. Pascucci.
A Virtual Reality Visualization Tool for Neuron Tracing, In IEEE Transactions on Visualization and Computer Graphics, IEEE, 2017.
ISSN: 1077-2626
DOI: 10.1109/TVCG.2017.2744079
Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists.
A. Vardhan, J. Fishbaugh, C. Vachet, G. Gerig.
Longitudinal Modeling of Multi-modal Image Contrast Reveals Patterns of Early Brain Growth, In Medical Image Computing and Computer Assisted Intervention - MICCAI 2017, Springer International Publishing, pp. 75--83. 2017.
DOI: 10.1007/978-3-319-66182-7_9
The brain undergoes rapid development during early childhood as a series of biophysical and chemical processes occur, which can be observed in magnetic resonance (MR) images as a change over time of white matter intensity relative to gray matter. Such a contrast change manifests in specific patterns in different imaging modalities, suggesting that brain maturation is encoded by appearance changes in multi-modal MRI. In this paper, we explore the patterns of early brain growth encoded by multi-modal contrast changes in a longitudinal study of children. For a given modality, contrast is measured by comparing histograms of intensity distributions between white and gray matter. Multivariate non-linear mixed effects (NLME) modeling provides subject-specific as well as population growth trajectories which accounts for contrast from multiple modalities. The multivariate NLME procedure and resulting non-linear contrast functions enable the study of maturation in various regions of interest. Our analysis of several brain regions in a study of 70 healthy children reveals a posterior to anterior pattern of timing of maturation in the major lobes of the cerebral cortex, with posterior regions maturing earlier than anterior regions. Furthermore, we find significant differences between maturation rates between males and females.
I. Wald, C. Brownlee, W. Usher, A. Knoll.
CPU Volume Rendering of Adaptive Mesh Refinement Data, In ACM SIGGRAPH Asia 2017 Symposium on Visualization, ACM Press, 2017.
DOI: 10.1145/3139295.3139305
Adaptive Mesh Refinement (AMR) methods are widespread in scientific computing, and visualizing the resulting data with efficient and accurate rendering methods can be vital for enabling interactive data exploration. In this work, we detail a comprehensive solution for directly volume rendering block-structured (Berger-Colella) AMR data in the OSPRay interactive CPU ray tracing framework. In particular, we contribute a general method for representing and traversing AMR data using a kd-tree structure, and four different reconstruction options, one of which in particular (the basis function approach) is novel compared to existing methods. We demonstrate our system on two types of block-structured AMR data and compressed scalar field data, and show how it can be easily used in existing production-ready applications through a prototypical integration in the widely used visualization program ParaView.
Y. Wan, C. Hansen.
Uncertainty Footprint: Visualization of Nonuniform Behavior of Iterative Algorithms Applied to 4D Cell Tracking, In Computer Graphics Forum, Wiley, 2017.
Research on microscopy data from developing biological samples usually requires tracking individual cells over time. When cells are three-dimensionally and densely packed in a time-dependent scan of volumes, tracking results can become unreliable and uncertain. Not only are cell segmentation results often inaccurate to start with, but it also lacks a simple method to evaluate the tracking outcome. Previous cell tracking methods have been validated against benchmark data from real scans or artificial data, whose ground truth results are established by manual work or simulation. However, the wide variety of real-world data makes an exhaustive validation impossible. Established cell tracking tools often fail on new data, whose issues are also difficult to diagnose with only manual examinations. Therefore, data-independent tracking evaluation methods are desired for an explosion of microscopy data with increasing scale and resolution. In this paper, we propose the uncertainty footprint, an uncertainty quantification and visualization technique that examines nonuniformity at local convergence for an iterative evaluation process on a spatial domain supported by partially overlapping bases. We demonstrate that the patterns revealed by the uncertainty footprint indicate data processing quality in two algorithms from a typical cell tracking workflow – cell identification and association. A detailed analysis of the patterns further allows us to diagnose issues and design methods for improvements. A 4D cell tracking workflow equipped with the uncertainty footprint is capable of self diagnosis and correction for a higher accuracy than previous methods whose evaluation is limited by manual examinations.
Y. Wan, H. Otsuna, H. A. Holman, B. Bagley, M. Ito, A. K. Lewis, M. Colasanto, G. Kardon, K. Ito, C. Hansen.
FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis, In BMC Bioinformatics, Vol. 18, No. 1, Springer Nature, May, 2017.
DOI: 10.1186/s12859-017-1694-9
Background:
Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations.
Results:
Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender.
Conclusion:
The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.
J. J. Wolff, M. R. Swanson, J. T. Elison, G. Gerig, J. R. Pruett, M. A. Styner, C. Vachet, K. N. Botteron, S. R. Dager, A. M. Estes, H. C. Hazlett, R. T. Schultz, M. D. Shen, L. Zwaigenbaum, J. Piven.
Neural circuitry at age 6~months associated with later repetitive behavior and sensory responsiveness in autism, In Molecular Autism, Vol. 8, No. 1, Springer Nature, March, 2017.
DOI: 10.1186/s13229-017-0126-z
Background
Restricted and repetitive behaviors are defining features of autism spectrum disorder (ASD). Under revised diagnostic criteria for ASD, this behavioral domain now includes atypical responses to sensory stimuli. To date, little is known about the neural circuitry underlying these features of ASD early in life.
Methods
Longitudinal diffusion tensor imaging data were collected from 217 infants at high familial risk for ASD. Forty-four of these infants were diagnosed with ASD at age 2. Targeted cortical, cerebellar, and striatal white matter pathways were defined and measured at ages 6, 12, and 24 months. Dependent variables included the Repetitive Behavior Scale-Revised and the Sensory Experiences Questionnaire.
Results
Among children diagnosed with ASD, repetitive behaviors and sensory response patterns were strongly correlated, even when accounting for developmental level or social impairment. Longitudinal analyses indicated that the genu and cerebellar pathways were significantly associated with both repetitive behaviors and sensory responsiveness but not social deficits. At age 6 months, fractional anisotropy in the genu significantly predicted repetitive behaviors and sensory responsiveness at age 2. Cerebellar pathways significantly predicted later sensory responsiveness. Exploratory analyses suggested a possible disordinal interaction based on diagnostic status for the association between fractional anisotropy and repetitive behavior.
Conclusions
Our findings suggest that restricted and repetitive behaviors contributing to a diagnosis of ASD at age 2 years are associated with structural properties of callosal and cerebellar white matter pathways measured during infancy and toddlerhood. We further identified that repetitive behaviors and unusual sensory response patterns co-occur and share common brain-behavior relationships. These results were strikingly specific given the absence of association between targeted pathways and social deficits.
L. Yang, A. Narayan, P. Wang.
Sequential data assimilation with multiple nonlinear models and applications to subsurface flow, In Journal of Computational Physics, Vol. 346, pp. 356--368. Oct, 2017.
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2017.06.026
Complex systems are often described with competing models. Such divergence of interpretation on the system may stem from model fidelity, mathematical simplicity, and more generally, our limited knowledge of the underlying processes. Meanwhile, available but limited observations of system state could further complicates one's prediction choices. Over the years, data assimilation techniques, such as the Kalman filter, have become essential tools for improved system estimation by incorporating both models forecast and measurement; but its potential to mitigate the impacts of aforementioned model-form uncertainty has yet to be developed. Based on an earlier study of Multi-model Kalman filter, we propose a novel framework to assimilate multiple models with observation data for nonlinear systems, using extended Kalman filter, ensemble Kalman filter and particle filter, respectively. Through numerical examples of subsurface flow, we demonstrate that the new assimilation framework provides an effective and improved forecast of system behaviour.
2016
K. Aras B. Burton, D. Swenson, R.S. MacLeod.
Spatial organization of acute myocardial ischemia, In Journal of Electrocardiology, Vol. 49, No. 3, Elsevier, pp. 323–336. May, 2016.
Introduction
Myocardial ischemia is a pathological condition initiated by supply and demand imbalance of the blood to the heart. Previous studies suggest that ischemia originates in the subendocardium, i.e., that nontransmural ischemia is limited to the subendocardium. By contrast, we hypothesized that acute myocardial ischemia is not limited to the subendocardium and sought to document its spatial distribution in an animal preparation. The goal of these experiments was to investigate the spatial organization of ischemia and its relationship to the resulting shifts in ST segment potentials during short episodes of acute ischemia.
Methods
We conducted acute ischemia studies in open-chest canines (N = 19) and swines (N = 10), which entailed creating carefully controlled ischemia using demand, supply or complete occlusion ischemia protocols and recording intramyocardial and epicardial potentials. Elevation of the potentials at 40% of the ST segment between the J-point and the peak of the T-wave (ST40%) provided the metric for local ischemia. The threshold for ischemic ST segment elevations was defined as two standard deviations away from the baseline values.
Results
The relative frequency of occurrence of acute ischemia was higher in the subendocardium (78% for canines and 94% for swines) and the mid-wall (87% for canines and 97% for swines) in comparison with the subepicardium (30% for canines and 22% for swines). In addition, acute ischemia was seen arising throughout the myocardium (distributed pattern) in 87% of the canine and 94% of the swine episodes. Alternately, acute ischemia was seen originating only in the subendocardium (subendocardial pattern) in 13% of the canine episodes and 6% of the swine episodes (p < 0.05).
Conclusions
Our findings suggest that the spatial distribution of acute ischemia is a complex phenomenon arising throughout the myocardial wall and is not limited to the subendocardium.
P.R. Atkins, S.Y. Elhabian, P. Agrawal, M.D. Harris, R.T. Whitaker, J.A. Weiss, C.L. Peters, A.E. Anderson.
Quantitative comparison of cortical bone thickness using correspondence-based shape modeling in patients with cam femoroacetabular impingement, In Journal of Orthopaedic Research, Wiley-Blackwell, Nov, 2016.
DOI: 10.1002/jor.23468
The proximal femur is abnormally shaped in patients with cam-type femoroacetabular impingement (FAI). Impingement
may elicit bone remodeling at the proximal femur, causing increases in cortical bone thickness. We used correspondence-based shape modeling to quantify and compare cortical thickness between cam patients and controls for the location of the cam lesion and the proximal femur. Computed tomography images were segmented for 45 controls and 28 cam-type FAI patients. The segmentations were input to a correspondence-based shape model to identify the region of the cam lesion. Median cortical thickness data over the region of the cam lesion and the proximal femur were compared between mixed-gender and gender-specific groups. Median [interquartile range] thickness was significantly greater in FAI patients than controls in the cam lesion (1.47 [0.64] vs. 1.13 [0.22] mm, respectively; p < 0.001) and proximal femur (1.28 [0.30] vs. 0.97 [0.22] mm, respectively; p < 0.001). Maximum thickness in the region of the cam lesion was more anterior and less lateral (p < 0.001) in FAI patients. Male FAI patients had increased thickness compared to male controls in the cam lesion (1.47 [0.72] vs. 1.10 [0.19] mm, respectively; p < 0.001) and proximal femur (1.25 [0.29] vs. 0.94 [0.17] mm, respectively; p < 0.001). Thickness was not significantly different between male and female controls. Clinical significance: Studies of non-pathologic cadavers have provided guidelines regarding safe surgical resection depth for FAI patients. However, our results suggest impingement induces cortical thickening in cam patients, which may strengthen the proximal femur. Thus, these previously established guidelines may be too conservative.
J.L. Baker, J. Ryou, X.F. Wei, C.R. Butson, N.D. Schiff, K.P. Purpura.
Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates, In Journal of Neurophysiology, Vol. 116, No. 5, American Physiological Society, pp. 2383--2404. Aug, 2016.
DOI: 10.1152/jn.01129.2015
The central thalamus (CT) is a key component of the brain-wide network underlying arousal regulation and sensory-motor integration during wakefulness in the mammalian brain. Dysfunction of the CT, typically a result of severe brain injury (SBI), leads to long-lasting impairments in arousal regulation and subsequent deficits in cognition. Central thalamic deep brain stimulation (CT-DBS) is proposed as a therapy to reestablish and maintain arousal regulation to improve cognition in select SBI patients. However, a mechanistic understanding of CT-DBS and an optimal method of implementing this promising therapy are unknown. Here we demonstrate in two healthy nonhuman primates (NHPs), Macaca mulatta, that location-specific CT-DBS improves performance in visuomotor tasks and is associated with physiological effects consistent with enhancement of endogenous arousal. Specifically, CT-DBS within the lateral wing of the central lateral nucleus and the surrounding medial dorsal thalamic tegmental tract (DTTm) produces a rapid and robust modulation of performance and arousal, as measured by neuronal activity in the frontal cortex and striatum. Notably, the most robust and reliable behavioral and physiological responses resulted when we implemented a novel method of CT-DBS that orients and shapes the electric field within the DTTm using spatially separated DBS leads. Collectively, our results demonstrate that selective activation within the DTTm of the CT robustly regulates endogenous arousal and enhances cognitive performance in the intact NHP; these findings provide insights into the mechanism of CT-DBS and further support the development of CT-DBS as a therapy for reestablishing arousal regulation to support cognition in SBI patients.
M. Barjatia, T. Tasdizen, B. Song, K.M. Golden.
Network modeling of Arctic melt ponds, In Cold Regions Science and Technology, Vol. 124, Elsevier BV, pp. 40--53. April, 2016.
DOI: 10.1016/j.coldregions.2015.11.019
The recent precipitous losses of summer Arctic sea ice have outpaced the projections of most climate models. A number of efforts to improve these models have focused in part on a more accurate accounting of sea ice albedo or reflectance. In late spring and summer, the albedo of the ice pack is determined primarily by melt ponds that form on the sea ice surface. The transition of pond configurations from isolated structures to interconnected networks is critical in allowing the lateral flow of melt water toward drainage features such as large brine channels, fractures, and seal holes, which can alter the albedo by removing the melt water. Moreover, highly connected ponds can influence the formation of fractures and leads during ice break-up. Here we develop algorithmic techniques for mapping photographic images of melt ponds onto discrete conductance networks which represent the geometry and connectedness of pond configurations. The effective conductivity of the networks is computed to approximate the ease of lateral flow. We implement an image processing algorithm with mathematical morphology operations to produce a conductance matrix representation of the melt ponds. Basic clustering and edge elimination, using undirected graphs, are then used to map the melt pond connections and reduce the conductance matrix to include only direct connections. The results for images taken during different times of the year are visually inspected and the number of mislabels is used to evaluate performance.
J. Beckvermit, T. Harman, C. Wight, M. Berzins.
Physical Mechanisms of DDT in an Array of PBX 9501 Cylinders Initiation Mechanisms of DDT, SCI Institute, April, 2016.
The Deflagration to Detonation Transition (DDT) in large arrays (100s) of explosive devices is investigated using large-scale computer simulations running the Uintah Computational Framework. Our particular interest is understanding the fundamental physical mechanisms by which convective deflagration of cylindrical PBX 9501 devices can transition to a fully-developed detonation in transportation accidents. The simulations reveal two dominant mechanisms, inertial confinement and Impact to Detonation Transition. In this study we examined the role of physical spacing of the cylinders and how it influenced the initiation of DDT.
J. Beckvermit, T. Harman, C. Wight,, M. Berzins.
Packing Configurations of PBX-9501 Cylinders to Reduce the Probability of a Deflagration to Detonation Transition (DDT), In Propellants, Explosives, Pyrotechnics, 2016.
ISSN: 1521-4087
DOI: 10.1002/prep.201500331
The detonation of hundreds of explosive devices from either a transportation or storage accident is an extremely dangerous event. This paper focuses on identifying ways of packing/storing arrays of explosive cylinders that will reduce the probability of a Deflagration to Detonation Transition (DDT). The Uintah Computational Framework was utilized to predict the conditions necessary for a large scale DDT to occur. The results showed that the arrangement of the explosive cylinders and the number of devices packed in a "box" greatly effects the probability of a detonation.
M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey, Q. Meng, J. Schmidt,, C. Wight.
Extending the Uintah Framework through the Petascale Modeling of Detonation in Arrays of High Explosive Devices, In SIAM Journal on Scientific Computing , Vol. 38, No. 5, pp. S101-S122. 2016.
DOI: 10.1137/15M1023270
The Uintah framework for solving a broad class of fluid-structure interaction problems uses a layered taskgraph approach that decouples the problem specification as a set of tasks from the adaptove runtime system that executes these tasks. Uintah has been developed by using a problem-driven approach that dates back to its inception. Using this approach it is possible to improve the performance of the problem-independent software components to enable the solution of broad classes of problems as well as the driving problem itself. This process is illustrated by a motivating problem that is the computational modeling of the hazards posed by thousands of explosive devices during a Deflagration to Detonation Transition (DDT) that occurred on Highway 6 in Utah. In order to solve this complex fluid-structure interaction problem at the required scale, algorithmic and data structure improvements were needed in a code that already appeared to work well at scale. These transformations enabled scalable runs for our target problem and provided the capability to model the transition to detonation. The performance improvements achieved are shown and the solution to the target problem provides insight as to why the detonation happened, as well as to a possible remediation strategy.
A. Bigelow, R. Choudhury, J. Baumes.
Resonant Laboratory and Candela: Spreading Your Visualization Ideas to the Masses, In Proceedings of Workshop on Visualization in Practice (VIP '16), Note: Best Paper Award , 2016.
Visualization practitioners are constantly developing new, innovative ways to visualize data, but much of the software that practitioners produce does not make it into production in professional systems. To solve this problem, we have developed and informally tested two open source systems. The first, Candela, is a framework and API for creating visualization components for the web that can wrap up new or existing visualizations as needed. Because Candela's API generalizes the inputs to a visualization, we have also developed a system called Resonant Laboratory that makes it possible for novice users to connect arbitrary datasets to Candela visualizations. Together, these systems enable novice users to explore and share their data with the growing library of state-of-the-art visualization techniques.
C. Christensen, S. Liu, G. Scorzelli, J. Lee, P.-T. Bremer, V. Pascucci.
Embedded Domain-Specific Language and Runtime System for Progressive Spatiotemporal Data Analysis and Visualization, In Symposium on Large Data Analysis and Visualization, IEEE, 2016.
As our ability to generate large and complex datasets grows, accessing and processing these massive data collections is increasingly the primary bottleneck in scientific analysis. Challenges include retrieving, converting, resampling, and combining remote and often disparately located data ensembles with only limited support from existing tools. In particular, existing solutions rely predominantly on extensive data transfers or large-scale remote computing resources, both of which are inherently offline processes with long delays and substantial repercussions for any mistakes. Such workflows severely limit the flexible exploration and rapid evaluation of new hypotheses that are crucial to the scientific process and thereby impede scientific discovery. Here we present an embedded domain-specific language (EDSL) specifically designed for the interactive exploration of largescale, remote data. Our EDSL allows users to express a wide range of data analysis operations in a simple and abstract manner. The underlying runtime system transparently resolves issues such as remote data access and resampling while at the same time maintaining interactivity through progressive and interruptible computation. This system enables, for the first time, interactive remote exploration of massive datasets such as the 7km NASA GEOS-5 Nature Run simulation, which previously have been analyzed only offline or at reduced resolution.
W. Deeb, J. J. Giordano, P. J. Rossi, A. Y. Mogilner, A. Gunduz, J. W. Judy, B. T. Klassen, C. R. Butson, C. Van Horne, D. Deny, D. D. Dougherty, D. Rowell, G. A. Gerhardt, G. S. Smith, F. A. Ponce, H. C. Walker, H. M. Bronte-Stewart, H. S. Mayberg, H. J. Chizeck, J. Langevin, J. Volkmann, J. L. Ostrem, J. B. Shute, J. Jimenez-Shahed, K. D. Foote, A. W. Shukla, M. A. Rossi, M. Oh, M. Pourfar, P. B. Rosenberg, P. A. Silburn, C. de Hemptine, P. A. Starr, T. Denison, U. Akbar, W. M. Grill,, M. S. Okun.
Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies, In Frontiers in Integrative Neuroscience, Vol. 10, pp. 38. 2016.
ISSN: 1662-5145
DOI: 10.3389/fnint.2016.00038
This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual Deep Brain Stimulation Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinical practice, formation of registries, and issues involving the use of DBS in the treatment of Tourette Syndrome. Next, advances in the use of neuroimaging and electrochemical markers to enhance DBS specificity were addressed. Updates on ongoing use and developments of DBS for the treatment of Parkinson’s disease, essential tremor, Alzheimer’s disease, depression, post-traumatic stress disorder, obesity, addiction were presented, and progress toward innovation(s) in closed-loop applications were discussed. Each section of these proceedings provides updates and highlights of new information as presented at this year’s international Think Tank, with a view toward current and near future advancement of the field.
S. Elhabian, C. Vachet, J. Piven, M. Styner, G. Gerig.
Compressive sensing based Q-space resampling for handling fast bulk motion in hardi acquisitions, In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE, pp. 907--910. April, 2016.
DOI: 10.1109/isbi.2016.7493412
Diffusion-weighted (DW) MRI has become a widely adopted imaging modality to reveal the underlying brain connectivity. Long acquisition times and/or non-cooperative patients increase the chances of motion-related artifacts. Whereas slow bulk motion results in inter-gradient misalignment which can be handled via retrospective motion correction algorithms, fast bulk motion usually affects data during the application of a single diffusion gradient causing signal dropout artifacts. Common practices opt to discard gradients bearing signal attenuation due to the difficulty of their retrospective correction, with the disadvantage to lose full gradients for further processing. Nonetheless, such attenuation might only affect limited number of slices within a gradient volume. Q-space resampling has recently been proposed to recover corrupted slices while saving gradients for subsequent reconstruction. However, few corrupted gradients are implicitly assumed which might not hold in case of scanning unsedated infants or patients in pain. In this paper, we propose to adopt recent advances in compressive sensing based reconstruction of the diffusion orientation distribution functions (ODF) with under sampled measurements to resample corrupted slices. We make use of Simple Harmonic Oscillator based Reconstruction and Estimation (SHORE) basis functions which can analytically model ODF from arbitrary sampled signals. We demonstrate the impact of the proposed resampling strategy compared to state-of-art resampling and gradient exclusion on simulated intra-gradient motion as well as samples from real DWI data.
S. Elhabian, P. Agrawal, R. Whitaker.
Optimal parameter map estimation for shape representation: A generative approach, In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE, pp. 660--663. April, 2016.
DOI: 10.1109/isbi.2016.7493353
Probabilistic label maps are a useful tool for important medical image analysis tasks such as segmentation, shape analysis, and atlas building. Existing methods typically rely on blurred signed distance maps or smoothed label maps to model uncertainties and shape variabilities, which do not conform to any generative model or estimation process, and are therefore suboptimal. In this paper, we propose to learn probabilistic label maps using a generative model on given set of binary label maps. The proposed approach generalizes well on unseen data while simultaneously capturing the variability in the training samples. Efficiency of the proposed approach is demonstrated for consensus generation and shape-based clustering using synthetic datasets as well as left atrial segmentations from late-gadolinium enhancement MRI.
M. Elwardy, T. Tasdizen, M. Cetin.
Disjunctive Normal Unsupervised LDA for P300-based Brain-Computer Interfaces, In 2016 24th Signal Processing and Communication Application Conference (SIU), IEEE, May, 2016.
DOI: 10.1109/siu.2016.7496226
Can people use text-entry based brain-computer interface (BCI) systems and start a free spelling mode without any calibration session? Brain activities differ largely across people and across sessions for the same user. Thus, how can the text-entry system classify the desired character among the other characters in the P300-based BCI speller matrix? In this paper, we introduce a new unsupervised classifier for a P300-based BCI speller, which uses a disjunctive normal form representation to define an energy function involving a logistic sigmoid function for classification. Our proposed classifier updates the initialized random weights performing classification for the P300 signals from the recorded data exploiting the knowledge of the sequence of row/column highlights. To verify the effectiveness of the proposed method, we performed an experimental analysis on data from 7 healthy subjects, collected in our laboratory. We compare the proposed unsupervised method to a baseline supervised linear discriminant analysis (LDA) classifier and demonstrate its effectiveness.
Page 31 of 144