Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

SCI Publications

2022


Z. Li, S. Liu, X. Yu, K. Bhavya, J. Cao, J. Diffenderfer, P.T. Bremer, V. Pascucci. ““Understanding Robustness Lottery”: A Comparative Visual Analysis of Neural Network Pruning Approaches,” Subtitled “arXiv preprint arXiv:2206.07918,” 2022.

ABSTRACT

Deep learning approaches have provided state-of-the-art performance in many applications by relying on extremely large and heavily overparameterized neural networks. However, such networks have been shown to be very brittle, not generalize well to new uses cases, and are often difficult if not impossible to deploy on resources limited platforms. Model pruning, i.e., reducing the size of the network, is a widely adopted strategy that can lead to more robust and generalizable network -- usually orders of magnitude smaller with the same or even improved performance. While there exist many heuristics for model pruning, our understanding of the pruning process remains limited. Empirical studies show that some heuristics improve performance while others can make models more brittle or have other side effects. This work aims to shed light on how different pruning methods alter the network's internal feature representation, and the corresponding impact on model performance. To provide a meaningful comparison and characterization of model feature space, we use three geometric metrics that are decomposed from the common adopted classification loss. With these metrics, we design a visualization system to highlight the impact of pruning on model prediction as well as the latent feature embedding. The proposed tool provides an environment for exploring and studying differences among pruning methods and between pruned and original model. By leveraging our visualization, the ML researchers can not only identify samples that are fragile to model pruning and data corruption but also obtain insights and explanations on how some pruned …


2021


H. Bhatia, S. N. Petruzza, R. Anirudh, A. G. Gyulassy, R. M. Kirby, V. Pascucci, P. T. Bremer. “Data-Driven Estimation of Temporal-Sampling Errors in Unsteady Flows,” 2021.

ABSTRACT

While computer simulations typically store data at the highest available spatial resolution, it is often infeasible to do so for the temporal dimension. Instead, the common practice is to store data at regular intervals, the frequency of which is strictly limited by the available storage and I/O bandwidth. However, this manner of temporal subsampling can cause significant errors in subsequent analysis steps. More importantly, since the intermediate data is lost, there is no direct way of measuring this error after the fact. One particularly important use case that is affected is the analysis of unsteady flows using pathlines, as it depends on an accurate interpolation across time. Although the potential problem with temporal undersampling is widely acknowledged, there currently does not exist a practical way to estimate the potential impact. This paper presents a simple-to-implement yet powerful technique to estimate the error in pathlines due to temporal subsampling. Given an unsteady flow, we compute pathlines at the given temporal resolution as well as subsamples thereof. We then compute the error induced due to various levels of subsampling and use it to estimate the error between the given resolution and the unknown ground truth. Using two turbulent flows, we demonstrate that our approach, for the first time, provides an accurate, a posteriori error estimate for pathline computations. This estimate will enable scientists to better understand the uncertainties involved in pathline-based analysis techniques and can lead to new uncertainty visualization approaches using the predicted errors.



H. Bhatia, D. Hoang, N. Morrical, V. Pascucci, P.T. Bremer, P. Lindstrom. “AMM: Adaptive Multilinear Meshes,” Subtitled “arXiv:2007.15219,” 2021.

ABSTRACT

Adaptive representations are increasingly indispensable for reducing the in-memory and on-disk footprints of large-scale data. Usual solutions are designed broadly along two themes: reducing data precision, e.g., through compression, or adapting data resolution, e.g., using spatial hierarchies. Recent research suggests that combining the two approaches, i.e., adapting both resolution and precision simultaneously, can offer significant gains over using them individually. However, there currently exist no practical solutions to creating and evaluating such representations at scale. In this work, we present a new resolution-precision-adaptive representation to support hybrid data reduction schemes and offer an interface to existing tools and algorithms. Through novelties in spatial hierarchy, our representation, Adaptive Multilinear Meshes (AMM), provides considerable reduction in the mesh size. AMM creates a piecewise multilinear representation of uniformly sampled scalar data and can selectively relax or enforce constraints on conformity, continuity, and coverage, delivering a flexible adaptive representation. AMM also supports representing the function using mixed-precision values to further the achievable gains in data reduction. We describe a practical approach to creating AMM incrementally using arbitrary orderings of data and demonstrate AMM on six types of resolution and precision datastreams. By interfacing with state-of-the-art rendering tools through VTK, we demonstrate the practical and computational advantages of our representation for visualization techniques. With an open-source release of our tool to create AMM, we make such evaluation of data reduction accessible to the community, which we hope will foster new opportunities and future data reduction schemes



X. Huang, P. Klacansky, S. Petruzza, A. Gyulassy, P.T. Bremer, V. Pascucci. “Distributed merge forest: a new fast and scalable approach for topological analysis at scale,” In Proceedings of the ACM International Conference on Supercomputing, pp. 367-377. 2021.

ABSTRACT

Topological analysis is used in several domains to identify and characterize important features in scientific data, and is now one of the established classes of techniques of proven practical use in scientific computing. The growth in parallelism and problem size tackled by modern simulations poses a particular challenge for these approaches. Fundamentally, the global encoding of topological features necessitates inter process communication that limits their scaling. In this paper, we extend a new topological paradigm to the case of distributed computing, where the construction of a global merge tree is replaced by a distributed data structure, the merge forest, trading slower individual queries on the structure for faster end-to-end performance and scaling. Empirically, the queries that are most negatively affected also tend to have limited practical use. Our experimental results demonstrate the scalability of both the merge forest construction and the parallel queries needed in scientific workflows, and contrast this scalability with the two established alternatives that construct variations of a global tree.



Z. Li, H. Menon, K. Mohror, P. T. Bremer, Y. Livant, V. Pascucci. “Understanding a program's resiliency through error propagation,” In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, pp. 362-373. 2021.

ABSTRACT

Aggressive technology scaling trends have worsened the transient fault problem in high-performance computing (HPC) systems. Some faults are benign, but others can lead to silent data corruption (SDC), which represents a serious problem; a fault introducing an error that is not readily detected nto an HPC simulation. Due to the insidious nature of SDCs, researchers have worked to understand their impact on applications. Previous studies have relied on expensive fault injection campaigns with uniform sampling to provide overall SDC rates, but this solution does not provide any feedback on the code regions without samples.



T. McDonald, R. Shrestha, X. Yi, H. Bhatia, D. Chen, D. Goswami, V. Pascucci, T. Turbyville, P‐T Bremer. “Leveraging Topological Events in Tracking Graphs for Understanding Particle Diffusion,” In Computer Graphics Forum, Vol. 40, No. 3, pp. 251-262. 2021.

ABSTRACT

Single particle tracking (SPT) of fluorescent molecules provides significant insights into the diffusion and relative motion of tagged proteins and other structures of interest in biology. However, despite the latest advances in high-resolution microscopy, individual particles are typically not distinguished from clusters of particles. This lack of resolution obscures potential evidence for how merging and splitting of particles affect their diffusion and any implications on the biological environment. The particle tracks are typically decomposed into individual segments at observed merge and split events, and analysis is performed without knowing the true count of particles in the resulting segments. Here, we address the challenges in analyzing particle tracks in the context of cancer biology. In particular, we study the tracks of KRAS protein, which is implicated in nearly 20% of all human cancers, and whose clustering and aggregation have been linked to the signaling pathway leading to uncontrolled cell growth. We present a new analysis approach for particle tracks by representing them as tracking graphs and using topological events – merging and splitting, to disambiguate the tracks. Using this analysis, we infer a lower bound on the count of particles as they cluster and create conditional distributions of diffusion speeds before and after merge and split events. Using thousands of time-steps of simulated and in-vitro SPT data, we demonstrate the efficacy of our method, as it offers the biologists a new, detailed look into the relationship between KRAS clustering and diffusion speeds.



A. Venkat, A. Gyulassy, G. Kosiba, A. Maiti, H. Reinstein, R. Gee, P.-T. Bremer, V. Pascucci. “Towards replacing physical testing of granular materials with a Topology-based Model,” Subtitled “arXiv preprint arXiv:2109.08777,” 2021.

ABSTRACT

In the study of packed granular materials, the performance of a sample (e.g., the detonation of a high-energy explosive) often correlates to measurements of a fluid flowing through it. The "effective surface area," the surface area accessible to the airflow, is typically measured using a permeametry apparatus that relates the flow conductance to the permeable surface area via the Carman-Kozeny equation. This equation allows calculating the flow rate of a fluid flowing through the granules packed in the sample for a given pressure drop. However, Carman-Kozeny makes inherent assumptions about tunnel shapes and flow paths that may not accurately hold in situations where the particles possess a wide distribution in shapes, sizes, and aspect ratios, as is true with many powdered systems of technological and commercial interest. To address this challenge, we replicate these measurements virtually on micro-CT images of the powdered material, introducing a new Pore Network Model based on the skeleton of the Morse-Smale complex. Pores are identified as basins of the complex, their incidence encodes adjacency, and the conductivity of the capillary between them is computed from the cross-section at their interface. We build and solve a resistive network to compute an approximate laminar fluid flow through the pore structure. We provide two means of estimating flow-permeable surface area: (i) by direct computation of conductivity, and (ii) by identifying dead-ends in the flow coupled with isosurface extraction and the application of the Carman-Kozeny equation, with the aim of establishing consistency over a range of particle shapes, sizes, porosity levels, and void distribution patterns.


2019


A. Gyulassy, P.-T. Bremer, V. Pascucci. “Shared-Memory Parallel Computation of Morse-Smale Complexes with Improved Accuracy,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1183--1192. Jan, 2019.
DOI: 10.1109/tvcg.2018.2864848

ABSTRACT

Topological techniques have proven to be a powerful tool in the analysis and visualization of large-scale scientific data. In particular, the Morse-Smale complex and its various components provide a rich framework for robust feature definition and computation. Consequently, there now exist a number of approaches to compute Morse-Smale complexes for large-scale data in parallel. However, existing techniques are based on discrete concepts which produce the correct topological structure but are known to introduce grid artifacts in the resulting geometry. Here, we present a new approach that combines parallel streamline computation with combinatorial methods to construct a high-quality discrete Morse-Smale complex. In addition to being invariant to the orientation of the underlying grid, this algorithm allows users to selectively build a subset of features using high-quality geometry. In particular, a user may specifically select which ascending/descending manifolds are reconstructed with improved accuracy, focusing computational effort where it matters for subsequent analysis. This approach computes Morse-Smale complexes for larger data than previously feasible with significant speedups. We demonstrate and validate our approach using several examples from a variety of different scientific domains, and evaluate the performance of our method.



D. Hoang, P. Klacansky, H. Bhatia, P.-T. Bremer, P. Lindstrom, V. Pascucci. “A Study of the Trade-off Between Reducing Precision and Reducing Resolution for Data Analysis and Visualization,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1193--1203. Jan, 2019.
DOI: 10.1109/tvcg.2018.2864853

ABSTRACT

There currently exist two dominant strategies to reduce data sizes in analysis and visualization: reducing the precision of the data, e.g., through quantization, or reducing its resolution, e.g., by subsampling. Both have advantages and disadvantages and both face fundamental limits at which the reduced information ceases to be useful. The paper explores the additional gains that could be achieved by combining both strategies. In particular, we present a common framework that allows us to study the trade-off in reducing precision and/or resolution in a principled manner. We represent data reduction schemes as progressive streams of bits and study how various bit orderings such as by resolution, by precision, etc., impact the resulting approximation error across a variety of data sets as well as analysis tasks. Furthermore, we compute streams that are optimized for different tasks to serve as lower bounds on the achievable error. Scientific data management systems can use the results presented in this paper as guidance on how to store and stream data to make efficient use of the limited storage and bandwidth in practice.


2018


H. Bhatia, A.G. Gyulassy, V. Lordi, J.E. Pask, V. Pascucci, P.T. Bremer. “TopoMS: Comprehensive topological exploration for molecular and condensed‐matter systems,” In Journal of Computational Chemistry, Vol. 39, No. 16, Wiley, pp. 936--952. March, 2018.
DOI: 10.1002/jcc.25181

ABSTRACT

We introduce TopoMS, a computational tool enabling detailed topological analysis of molecular and condensed‐matter systems, including the computation of atomic volumes and charges through the quantum theory of atoms in molecules, as well as the complete molecular graph. With roots in techniques from computational topology, and using a shared‐memory parallel approach, TopoMS provides scalable, numerically robust, and topologically consistent analysis. TopoMS can be used as a command‐line tool or with a GUI (graphical user interface), where the latter also enables an interactive exploration of the molecular graph. This paper presents algorithmic details of TopoMS and compares it with state‐of‐the‐art tools: Bader charge analysis v1.0 (Arnaldsson et al., 01/11/17) and molecular graph extraction using Critic2 (Otero‐de‐la‐Roza et al., Comput. Phys. Commun. 2014, 185, 1007). TopoMS not only combines the functionality of these individual codes but also demonstrates up to 4× performance gain on a standard laptop, faster convergence to fine‐grid solution, robustness against lattice bias, and topological consistency. TopoMS is released publicly under BSD License. © 2018 Wiley Periodicals, Inc.



S. Liu, P.T. Bremer, J.J. Thiagarajan, V. Srikumar, B. Wang, Y. Livnat, V. Pascucci. “Visual Exploration of Semantic Relationships in Neural Word Embeddings,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 24, No. 1, IEEE, pp. 553--562. Jan, 2018.
DOI: 10.1109/tvcg.2017.2745141

ABSTRACT

Constructing distributed representations for words through neural language models and using the resulting vector spaces for analysis has become a crucial component of natural language processing (NLP). However, despite their widespread application, little is known about the structure and properties of these spaces. To gain insights into the relationship between words, the NLP community has begun to adapt high-dimensional visualization techniques. In particular, researchers commonly use t-distributed stochastic neighbor embeddings (t-SNE) and principal component analysis (PCA) to create two-dimensional embeddings for assessing the overall structure and exploring linear relationships (e.g., word analogies), respectively. Unfortunately, these techniques often produce mediocre or even misleading results and cannot address domain-specific visualization challenges that are crucial for understanding semantic relationships in word embeddings. Here, we introduce new embedding techniques for visualizing semantic and syntactic analogies, and the corresponding tests to determine whether the resulting views capture salient structures. Additionally, we introduce two novel views for a comprehensive study of analogy relationships. Finally, we augment t-SNE embeddings to convey uncertainty information in order to allow a reliable interpretation. Combined, the different views address a number of domain-specific tasks difficult to solve with existing tools.



S. Petruzza, A. Gyulassy, V. Pascucci,, P. T. Bremer. “A Task-Based Abstraction Layer for User Productivity and Performance Portability in Post-Moore’s Era Supercomputing,” In 3RD INTERNATIONAL WORKSHOP ON POST-MOORE’S ERA SUPERCOMPUTING (PMES), 2018.

ABSTRACT

The proliferation of heterogeneous computing architectures in current and future supercomputing systems dramatically increases the complexity of software development and exacerbates the divergence of software stacks. Currently, task-based runtimes attempt to alleviate these impediments, however their effective use requires expertise and deep integration that does not facilitate reuse and portability. We propose to introduce a task-based abstraction layer that separates the definition of the algorithm from the runtime-specific implementation, while maintaining performance portability.



S. Petruzza, A. Gyulassy, V. Pascucci,, P. T. Bremer. “A Task-Based Abstraction Layer for User Productivity and Performance Portability in Post-Moore’s Era Supercomputing,” In 3RD INTERNATIONAL WORKSHOP ON POST-MOORE’S ERA SUPERCOMPUTING (PMES), 2018.

ABSTRACT

The proliferation of heterogeneous computing architectures in current and future supercomputing systems dramatically increases the complexity of software development and exacerbates the divergence of software stacks. Currently, task-based runtimes attempt to alleviate these impediments, however their effective use requires expertise and deep integration that does not facilitate reuse and portability. We propose to introduce a task-based abstraction layer that separates the definition of the algorithm from the runtime-specific implementation, while maintaining performance portability.


2017


S. Petruzza, A. Venkat, A. Gyulassy, G. Scorzelli, F. Federer, A. Angelucci, V. Pascucci, P. T. Bremer. “ISAVS: Interactive Scalable Analysis and Visualization System,” In ACM SIGGRAPH Asia 2017 Symposium on Visualization, ACM Press, 2017.
DOI: 10.1145/3139295.3139299

ABSTRACT

Modern science is inundated with ever increasing data sizes as computational capabilities and image acquisition techniques continue to improve. For example, simulations are tackling ever larger domains with higher fidelity, and high-throughput microscopy techniques generate larger data that are fundamental to gather biologically and medically relevant insights. As the image sizes exceed memory, and even sometimes local disk space, each step in a scientific workflow is impacted. Current software solutions enable data exploration with limited interactivity for visualization and analytic tasks. Furthermore analysis on HPC systems often require complex hand-written parallel implementations of algorithms that suffer from poor portability and maintainability. We present a software infrastructure that simplifies end-to-end visualization and analysis of massive data. First, a hierarchical streaming data access layer enables interactive exploration of remote data, with fast data fetching to test analytics on subsets of the data. Second, a library simplifies the process of developing new analytics algorithms, allowing users to rapidly prototype new approaches and deploy them in an HPC setting. Third, a scalable runtime system automates mapping analysis algorithms to whatever computational hardware is available, reducing the complexity of developing scaling algorithms. We demonstrate the usability and performance of our system using a use case from neuroscience: filtering, registration, and visualization of tera-scale microscopy data. We evaluate the performance of our system using a leadership-class supercomputer, Shaheen II.



W. Usher, P. Klacansky, F. Federer, P. T. Bremer, A. Knoll, J. Yarch, A. Angelucci, V. Pascucci. “A Virtual Reality Visualization Tool for Neuron Tracing,” In IEEE Transactions on Visualization and Computer Graphics, IEEE, 2017.
ISSN: 1077-2626
DOI: 10.1109/TVCG.2017.2744079

ABSTRACT

Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists.


2016


C. Christensen, S. Liu, G. Scorzelli, J. Lee, P.-T. Bremer, V. Pascucci. “Embedded Domain-Specific Language and Runtime System for Progressive Spatiotemporal Data Analysis and Visualization,” In Symposium on Large Data Analysis and Visualization, IEEE, 2016.

ABSTRACT

As our ability to generate large and complex datasets grows, accessing and processing these massive data collections is increasingly the primary bottleneck in scientific analysis. Challenges include retrieving, converting, resampling, and combining remote and often disparately located data ensembles with only limited support from existing tools. In particular, existing solutions rely predominantly on extensive data transfers or large-scale remote computing resources, both of which are inherently offline processes with long delays and substantial repercussions for any mistakes. Such workflows severely limit the flexible exploration and rapid evaluation of new hypotheses that are crucial to the scientific process and thereby impede scientific discovery. Here we present an embedded domain-specific language (EDSL) specifically designed for the interactive exploration of largescale, remote data. Our EDSL allows users to express a wide range of data analysis operations in a simple and abstract manner. The underlying runtime system transparently resolves issues such as remote data access and resampling while at the same time maintaining interactivity through progressive and interruptible computation. This system enables, for the first time, interactive remote exploration of massive datasets such as the 7km NASA GEOS-5 Nature Run simulation, which previously have been analyzed only offline or at reduced resolution.



D. Maljovec, S. Liu, Bei Wang, V. Pascucci, P. T. Bremer, D. Mandelli, C. Smith.. “Analyzing Simulation-Based PRA Data Through Traditional and Topological Clustering: A BWR Station Blackout Case Study,” In Reliability Engineering & System Safety, Vol. 145, Elsevier, pp. 262--276. January, 2016.
DOI: 10.1016/j.ress.2015.07.001

ABSTRACT

Dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP, MELCOR) with simulation controller codes (e.g., RAVEN, ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters, and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated, where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other in bringing enhanced structural understanding of the data.



I. Rodero, M. Parashar, A.G. Landge, S. Kumar, V. Pascucci,, P.T. Bremer. “Evaluation of in-situ analysis strategies at scale for power efficiency and scalability,” In Cluster, Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM International Symposium on, IEEE, pp. 156--164. 2016.

ABSTRACT

The increasing gap between available compute power and I/O capabilities is resulting in simulation pipelines running on leadership computing facilities being reformulated. In particular, in-situ processing is complementing conventional post-process analysis; however, it can be performed by using the same compute resources as the simulation or using secondary dedicated resources.

In this paper, we focus on three different in-situ analysis strategies, which use the same compute resources as the ongoing simulation but different data movement strategies. We evaluate the costs incurred by these strategies in terms of run time, scalability and power/energy consumption. Furthermore, we extrapolate power behavior to peta-scale and investigate different design choices through projections. Experimental evaluation at full machine scale on Titan supports that using fewer cores per node for in-situ analysis is the optimum choice in terms of scalability. Hence, further research effort should be devoted towards developing in-situ analysis techniques following this strategy in future high-end systems.


2015


H. Bhatia, Bei Wang, G. Norgard, V. Pascucci, P. T. Bremer. “Local, Smooth, and Consistent Jacobi Set Simplification,” In Computational Geometry, Vol. 48, No. 4, Elsevier, pp. 311-332. May, 2015.
DOI: 10.1016/j.comgeo.2014.10.009

ABSTRACT

The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lack fine-grained control over the process, and heavily restrict the type of simplifications possible.

This paper introduces the theoretical foundations of a new simplification framework for Jacobi sets. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some userdefined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth-death points (a birth-death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).



P. T. Bremer, D. Maljovec, A. Saha, Bei Wang, J. Gaffney, B. K. Spears, V. Pascucci. “ND2AV: N-Dimensional Data Analysis and Visualization -- Analysis for the National Ignition Campaign,” In Computing and Visualization in Science, 2015.

ABSTRACT

One of the biggest challenges in high-energy physics is to analyze a complex mix of experimental and simulation data to gain new insights into the underlying physics. Currently, this analysis relies primarily on the intuition of trained experts often using nothing more sophisticated than default scatter plots. Many advanced analysis techniques are not easily accessible to scientists and not flexible enough to explore the potentially interesting hypotheses in an intuitive manner. Furthermore, results from individual techniques are often difficult to integrate, leading to a confusing patchwork of analysis snippets too cumbersome for data exploration. This paper presents a case study on how a combination of techniques from statistics, machine learning, topology, and visualization can have a significant impact in the field of inertial confinement fusion. We present the ND2AV: N-Dimensional Data Analysis and Visualization framework, a user-friendly tool aimed at exploiting the intuition and current work flow of the target users. The system integrates traditional analysis approaches such as dimension reduction and clustering with state-of-the-art techniques such as neighborhood graphs and topological analysis, and custom capabilities such as defining combined metrics on the fly. All components are linked into an interactive environment that enables an intuitive exploration of a wide variety of hypotheses while relating the results to concepts familiar to the users, such as scatter plots. ND2AV uses a modular design providing easy extensibility and customization for different applications. ND2AV is being actively used in the National Ignition Campaign and has already led to a number of unexpected discoveries.