Congratulations to Jeff Weiss for receiving the Distinguished Research Award that recognizes outstanding achievement and excellence in scholarly and creative research.
Professor Weiss received his bachelor’s and master’s degrees in Bioengineering at the University of California, San Diego, his doctorate in Bioengineering at the University of Utah in 1994, and completed postdoctoral training with the Applied Mechanics Group at Lawrence Livermore National Laboratory (1995-96).
Congratulations to Chuck Hansen on the 5-year renewal of his grant from NASA titled “OpenSpace – An Engine for Dynamic Visualization of Earth and Space Science for Informal Education and Beyond”.
If it weren’t for an important computer graphics technique seen in special effects for movies known as “ray tracing,” Spider-Man would appear as a flat, lifeless superhero, or Thanos from “The Avengers” would just be a one-dimensional super villain.
Thanks to ray tracing – a computer graphics rendering technique that allows light to interact with objects in a realistic manner – special effects in blockbuster films have an ultra-realistic look that can fool audiences into thinking they are viewing genuine objects. Ingo Wald, a pioneer in ray tracing who conducted much of his work at the University of Utah’s Scientific Computing and Imaging Institute (SCI), will receive a Scientific and Technical Academy Award Feb. 13 along with four other researchers, all of whom developed ray tracing for Intel. They include Sven Woop, Carsten Benthin, Attila T. Áfra and Manfred Ernst.
National Science Foundation and Office of Science and Technology (OSTP) veteran, Professor Manish Parashar, a distinguished professor of computer science at Rutgers University, will join SCI on January 1, 2021.
“We are thrilled to have a leader like Professor Parashar take the helm at the Institute,” said Dan Reed, senior vice president for Academic Affairs. “He brings an unparalleled depth and breadth of experience in cyberinfrastructure and computer and computational science that will advance SCI as it continues to innovate, grow, and build research collaborations across the entire University of Utah campus.”
ShapeWorks Users Get-togethers: We have been maintaining a monthly, remote get-together for ShapeWorks users that is alternating between software-centric, demonstrating new/improved software features, and user-centric meetings, with open discussions that include Q&A, feature requests, tutorial-type discussions, and comments/feedback/suggestions to improve ShapeWorks tools. We also encourage you to bring your shape modeling story (use case) to the table to discuss how to customize ShapeWorks for your own use case. If you are interested in joining, please email This email address is being protected from spambots. You need JavaScript enabled to view it. and we will add you to the invite list.
We are pleased to announce the recipient of The Leonardo Award 2020 is Chris Johnson Ph.D. of the SCI Institute at the University of Utah for his curiosity, creativity and vision. Due to these unprecedented times, the Gala event was held virtually.
Wilson Good Wins Young Investigator's Award at Computing in Cardiology
Congratulations to Wilson Good on winning the Rosanna Degani Young Investigators’ Award competition at the international Computing in Cardiology conference, Rimini, 16th September 2020.
Tendon Injury and Collagen Mechanics
Accumulation of collagen molecular unfolding is the mechanism of cyclic fatigue damage and failure in collagenous tissues
In understanding the failure of dense collagenous soft tissues over multiple loading cycles, the predominant hypothesis for development of overuse injuries is that repeated subfailure loading causes accumulation of “micro-damage”, and when this micro-damage accumulates at a rate that is faster than can be repaired, this results in injury in a clinical sense (tissue failure and resulting pain from the injury and overload of surrounding structures). However the specific nature of this micro-damage has remained unknown. In this study, we demonstrate that the micro-damage is actually collagen molecular unfolding, which accumulates with repeated cyclic loading. Our results provide a convincing explanation for the micro-damage hypothesis: Molecular-level collagen damage is generated by tissue-level loading, and the ability to repair this damage determines whether the applied loading leads to tissue failure.
University of Utah School of Computing assistant professor Bei Wang was awarded more than $832,000 from the U.S. Department of Energy’s Early Career Research Program, one of only 75 scientists in the nation and the only faculty member from the U to earn the award this year.
Wang’s project, titled “Topology-Preserving Data Sketching for Scientific Visualization,” will conduct a study of topology-preserving data sketching techniques to improve visual exploration and understanding of large scientific data.