Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

Scientific Computing

Numerical simulation of real-world phenomena provides fertile ground for building interdisciplinary relationships. The SCI Institute has a long tradition of building these relationships in a win-win fashion – a win for the theoretical and algorithmic development of numerical modeling and simulation techniques and a win for the discipline-specific science of interest. High-order and adaptive methods, uncertainty quantification, complexity analysis, and parallelization are just some of the topics being investigated by SCI faculty. These areas of computing are being applied to a wide variety of engineering applications ranging from fluid mechanics and solid mechanics to bioelectricity.


martin

Martin Berzins

Parallel Computing
GPUs
mike

Mike Kirby

Finite Element Methods
Uncertainty Quantification
GPUs
pascucci

Valerio Pascucci

Scientific Data Management
chris

Chris Johnson

Problem Solving Environments
ross

Ross Whitaker

GPUs
chuck

Chuck Hansen

GPUs
       

Scientific Computing Project Sites:


Publications in Scientific Computing:


Distributed Resources for the Earth System Grid Advanced Management (DREAM), Final Report
L. Cinquini, S. Petruzza, Jason J. Boutte, S. Ames, G. Abdulla, V. Balaji, R. Ferraro, A. Radhakrishnan, L. Carriere, T. Maxwell, G. Scorzelli, V. Pascucci. 2020.

The DREAM project was funded more than 3 years ago to design and implement a next-generation ESGF (Earth System Grid Federation [1]) architecture which would be suitable for managing and accessing data and services resources on a distributed and scalable environment. In particular, the project intended to focus on the computing and visualization capabilities of the stack, which at the time were rather primitive. At the beginning, the team had the general notion that a better ESGF architecture could be built by modularizing each component, and redefining its interaction with other components by defining and exposing a well defined API. Although this was still the high level principle that guided the work, the DREAM project was able to accomplish its goals by leveraging new practices in IT that started just about 3 or 4 years ago: the advent of containerization technologies (specifically, Docker), the development of frameworks to manage containers at scale (Docker Swarm and Kubernetes), and their application to the commercial Cloud. Thanks to these new technologies, DREAM was able to improve the ESGF architecture (including its computing and visualization services) to a level of deployability and scalability beyond the original expectations.



CPU Ray Tracing of Tree-Based Adaptive Mesh Refinement Data
F. Wang, N. Marshak, W. Usher, C. Burstedde, A. Knoll, T. Heister, C. R. Johnson. In Eurographics Conference on Visualization (EuroVis) 2020, Vol. 39, No. 3, 2020.

Adaptive mesh refinement (AMR) techniques allow for representing a simulation’s computation domain in an adaptive fashion. Although these techniques have found widespread adoption in high-performance computing simulations, visualizing their data output interactively and without cracks or artifacts remains challenging. In this paper, we present an efficient solution for direct volume rendering and hybrid implicit isosurface ray tracing of tree-based AMR (TB-AMR) data. We propose a novel reconstruction strategy, Generalized Trilinear Interpolation (GTI), to interpolate across AMR level boundaries without cracks or discontinuities in the surface normal. We employ a general sparse octree structure supporting a wide range of AMR data, and use it to accelerate volume rendering, hybrid implicit isosurface rendering and value queries. We demonstrate that our approach achieves artifact-free isosurface and volume rendering and provides higher quality output images compared to existing methods at interactive rendering rates.



A convected particle least square interpolation material point method
Q. A. Tran, W. Sołowski, M. Berzins, J. Guilkey. In International Journal for Numerical Methods in Engineering, Wiley, October, 2019.

Applying the convected particle domain interpolation (CPDI) to the material point method has many advantages over the original material point method, including significantly improved accuracy. However, in the large deformation regime, the CPDI still may not retain the expected convergence rate. The paper proposes an enhanced CPDI formulation based on least square reconstruction technique. The convected particle least square interpolation (CPLS) material point method assumes the velocity field inside the material point domain as nonconstant. This velocity field in the material point domain is mapped to the background grid nodes with a moving least squares reconstruction. In this paper, we apply the improved moving least squares method to avoid the instability of the conventional moving least squares method due to a singular matrix. The proposed algorithm can improve convergence rate, as illustrated by numerical examples using the method of manufactured solutions.



In situ visualization of performance metrics in multiple domains
A. Sanderson, A. Humphrey, J. Schmidt, R. Sisneros,, M. Papka. In 2019 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools), IEEE, Nov, 2019.
DOI: 10.1109/protools49597.2019.00014

As application scientists develop and deploy simulation codes on to leadership-class computing resources, there is a need to instrument these codes to better understand performance to efficiently utilize these resources. This instrumentation may come from independent third-party tools that generate and store performance metrics or from custom instrumentation tools built directly into the application. The metrics collected are then available for visual analysis, typically in the domain in which there were collected. In this paper, we introduce an approach to visualize and analyze the performance metrics in situ in the context of the machine, application, and communication domains (MAC model) using a single visualization tool. This visualization model provides a holistic view of the application performance in the context of the resources where it is executing.



A Portable SIMD Primitive using Kokkos for Heterogeneous Architectures
D. Sahasrabudhe, E. T. Phipps, S. Rajamanickam, M. Berzins. In Sixth Workshop on Accelerator Programming Using Directives (WACCPD), 2019.

As computer architectures are rapidly evolving (e.g. those designed for exascale), multiple portability frameworks have been developed to avoid new architecture-specific development and tuning. However, portability frameworks depend on compilers for auto-vectorization and may lack support for explicit vectorization on heterogeneous platforms. Alternatively, programmers can use intrinsics-based primitives to achieve more efficient vectorization, but the lack of a gpu back-end for these primitives makes such code non-portable. A unified, portable, Single Instruction Multiple Data (simd) primitive proposed in this work, allows intrinsics-based vectorization on cpus and many-core architectures such as Intel Knights Landing (knl), and also facilitates Single Instruction Multiple Threads (simt) based execution on gpus. This unified primitive, coupled with the Kokkos portability ecosystem, makes it possible to develop explicitly vectorized code, which is portable across heterogeneous platforms. The new simd primitive is used on different architectures to test the performance boost against hard-to-auto-vectorize baseline, to measure the overhead against efficiently vectroized baseline, and to evaluate the new feature called the \logical vector length" (lvl). The simd primitive provides portability across cpus and gpus without any performance degradation being observed experimentally.



An Approach for Indirectly Adopting a Performance Portability Layer in Large Legacy Codes
J. K. Holmen, B. Peterson, M. Berzins. In 2nd International Workshop on Performance, Portability, and Productivity in HPC (P3HPC), In conjunction with SC19, 2019.

Diversity among supported architectures in current and emerging high performance computing systems, including those for exascale, makes portable codebases desirable. Portability of a codebase can be improved using a performance portability layer to provide access to multiple underlying programming models through a single interface. Direct adoption of a performance portability layer, however, poses challenges for large pre-existing software frameworks that may need to preserve legacy code and/or adopt other programming models in the future. This paper describes an approach for indirect adoption that introduces a framework-specific portability layer between the application developer and the adopted performance portability layer to help improve legacy code support and long-term portability for future architectures and programming models. This intermediate layer uses loop-level, application-level, and build-level components to ease adoption of a performance portability layer in large legacy codebases. Results are shown for two challenging case studies using this approach to make portable use of OpenMP and CUDA via Kokkos in an asynchronous many-task runtime system, Uintah. These results show performance improvements up to 2.7x when refactoring for portability and 2.6x when more efficiently using a node. Good strong-scaling to 442,368 threads across 1,728 Knights Landing processors are also shown using MPI+Kokkos at scale.



Time Integration Errors and Energy Conservation Properties of the Stormer Verlet Method Applied to MPM
M. Berzins. In Proceedings of VI International Conference on Particle-based Methods – Fundamentals and Applications, Barcelona, Edited by E. O ̃ nate, M. Bischoff, D.R.J. Owen, P. Wriggers & T. Zohdi, PARTICLES 2019, October, 2019.

The success of the Material Point Method (MPM) in solving many challenging problems nevertheless raises some open questions regarding the fundamental properties of the method such as the energy conservation since being addressed by Bardenhagen and by Love and Sulsky. Similarly while low order symplectic time integration techniques are used with MPM, higher order methods have not been used. For this reason the Stormer Verlet method, a popular and widely-used symplectic method is applied to MPM. Both the time integration error and the energy conservation properties of this method applied to MPM are considered. The method is shown to have locally third order accuracy of energy conservation in time. This is in contrast to the locally second order accuracy in energy conservation of the methods that are used in many MPM calculations. This third accuracy accuracy is demonstrated both locally and globally on a standard MPM test example.



An improved moving least squares method for the Material Point Method
Q. Tran, M. Berzins, W. Solowski. In Proceedings of the 2nd International Conference on the Material Point Method for Modelling Soil-Water-Structure Interaction (MPM 2019), 2019.

The paper presents an improved moving least squares reconstruction technique for the Material Point Method. The moving least squares reconstruction(MLS)can improve spatial accuracy in simulations involving large deformations. However, the MLS algorithm relies on computing the inverse of the moment matrix.This is both expensive and potentially unstable when there are not enough material points to reconstruct the high-order least squares function, which leads to a singular or an ill-conditioned matrix. The shown formulation can overcome this limitation while retain the same order of accuracy compared with the conventional moving least squares reconstruction.Numerical experiments demonstrate the improvements in the accuracy and comparison with the original Material Point Method and the Convected Particles Domain Interpolation method.



An Evaluation of An Asynchronous Task Based Dataflow Approach For Uintah
A. Humphrey, M. Berzins. In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Vol. 2, pp. 652-657. July, 2019.
ISSN: 0730-3157
DOI: 10.1109/COMPSAC.2019.10282

The challenge of running complex physics code on the largest computers available has led to dataflow paradigms being explored. While such approaches are often applied at smaller scales, the challenge of extreme-scale data flow computing remains. The Uintah dataflow framework has consistently used dataflow computing at the largest scales on complex physics applications. At present Uintah contains two main dataflow models. Both are based upon asynchronous communication. One uses a static graph-based approach with asynchronous communication and the other uses a more dynamic approach that was introduced almost a decade ago. Subsequent changes within the Uintah runtime system combined with many more large scale experiments, has necessitated a reevaluation of these two approaches, comparing them in the context of large scale problems. While the static approach has worked well for some large-scale simulations, the dynamic approach is seen to offer performance improvements over the static case for a challenging fluid-structure interaction problem at large scale that involves fluid flow and a moving solid represented using particle method on an adaptive mesh.



Node failure resiliency for Uintah without checkpointing
D. Sahasrabudhe, M. Berzins, J. Schmidt. In Concurrency and Computation: Practice and Experience, pp. e5340. 2019.
DOI: doi:10.1002/cpe.5340

The frequency of failures in upcoming exascale supercomputers may well be greater than at present due to many-core architectures if component failure rates remain unchanged. This potential increase in failure frequency coupled with I/O challenges at exascale may prove problematic for current resiliency approaches such as checkpoint restarting, although the use of fast intermediate memory may help. Algorithm-Based Fault Tolerance (ABFT) using Adaptive Mesh Refinement (AMR) is one resiliency approach used to address these challenges. For adaptive mesh codes, a coarse mesh version of the solution may be used to restore the fine mesh solution. This paper addresses the implementation of the ABFT approach within the Uintah software framework: both at a software level within Uintah and in the data reconstruction method used for the recovery of lost data. This method has two problems: inaccuracies introduced during the reconstruction propagate forward in time, and the physical consistency of variables such as positivity or boundedness may be violated during interpolation. These challenges can be addressed by the combination of two techniques: 1. a fault-tolerant MPI implementation to recover from runtime node failures, and 2. high-order interpolation schemes to preserve the physical solution and reconstruct lost data. The approach considered here uses a "Limited Essentially Non-Oscillatory" (LENO) scheme along with AMR to rebuild the lost data without checkpointing using Uintah. Experiments were carried out using a fault-tolerant MPI - ULFM to recover from runtime failure, and LENO to recover data on patches belonging to failed ranks, while the simulation was continued to the end. Results show that this ABFT approach is up to 10x faster than the traditional checkpointing method. The new interpolation approach is more accurate than linear interpolation and not subject to the overshoots found in other interpolation methods.



Portably Improving Uintah's Readiness for Exascale Systems Through the Use of Kokkos
J. K. Holmen, B. Peterson, A. Humphrey, D. Sunderland, O. H. Diaz-Ibarra, J. N. Thornock, M. Berzins. SCI Institute, 2019.

Uncertainty and diversity in future HPC systems, including those for exascale, makes portable codebases desirable. To ease future ports, the Uintah Computational Framework has adopted the Kokkos C++ Performance Portability Library. This paper describes infrastructure advancements and performance improvements using partitioning functionality recently added to Kokkos within Uintah's MPI+Kokkos hybrid parallelism approach. Results are presented for two challenging calculations that have been refactored to support Kokkos::OpenMP and Kokkos::Cuda back-ends. These results demonstrate performance improvements up to (i) 2.66x when refactoring for portability, (ii) 81.59x when adding loop-level parallelism via Kokkos back-ends, and (iii) 2.63x when more eciently using a node. Good strong-scaling characteristics to 442,368 threads across 1728 Knights Landing processors are also shown. These improvements have been achieved with little added overhead (sub-millisecond, consuming up to 0.18% of per-timestep time). Kokkos adoption and refactoring lessons are also discussed.



Scalable Asynchronous Many-Task Runtime Solutions to Globally Coupled Problems
Alan Humphrey. School of Computing, University of Utah, 2019.

Thermal radiation is an important physical process and a key mechanism in a class of challenging engineering and research problems. The principal exascale-candidate application motivating this research is a large eddy simulation (LES) aimed at predicting the performance of a commercial, 1200 MWe ultra-super critical (USC) coal boiler, with radiation as the dominant mode of heat transfer. Scalable modeling of radiation is currently one of the most challenging problems in large-scale simulations, due to the global, all-to-all physical and resulting computational connectivity. Fundamentally, radiation models impose global data dependencies, requiring each compute node in a distributed memory system to send data to, and receive data from, potentially every other node. This process can be prohibitively expensive on large distributed memory systems due to pervasive all-to-all message passing interface (MPI) communication. Correctness is also difficult to achieve when coordinating global communication of this kind. Asynchronous many-task (AMT) runtime systems are a possible leading alternative to mitigate programming challenges at the runtime system-level, sheltering the application developer from the complexities introduced by future architectures. However, large-scale parallel applications with complex global data dependencies, such as in radiation modeling, pose significant scalability challenges themselves, even for a highly tuned AMT runtime. The principal aims of this research are to demonstrate how the Uintah AMT runtime can be adapted, making it possible for complex multiphysics applications with radiation to scale on current petascale and emerging exascale architectures. For Uintah, which uses a directed acyclic graph to represent the computation and associated data dependencies, these aims are achieved through: 1) the use of an AMT runtime; 2) adapting and leveraging Uintah’s adaptive mesh refinement support to dramatically reduce computation, communication volume, and nodal memory footprint for radiation calculations; and 3) automating the all-to-all communication at the runtime level through a task graph dependency analysis phase designed to efficiently manage data dependencies inherent in globally coupled problems.



Shared-Memory Parallel Computation of Morse-Smale Complexes with Improved Accuracy
A. Gyulassy, P.-T. Bremer, V. Pascucci. In IEEE Transactions on Visualization and Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1183--1192. Jan, 2019.
DOI: 10.1109/tvcg.2018.2864848

Topological techniques have proven to be a powerful tool in the analysis and visualization of large-scale scientific data. In particular, the Morse-Smale complex and its various components provide a rich framework for robust feature definition and computation. Consequently, there now exist a number of approaches to compute Morse-Smale complexes for large-scale data in parallel. However, existing techniques are based on discrete concepts which produce the correct topological structure but are known to introduce grid artifacts in the resulting geometry. Here, we present a new approach that combines parallel streamline computation with combinatorial methods to construct a high-quality discrete Morse-Smale complex. In addition to being invariant to the orientation of the underlying grid, this algorithm allows users to selectively build a subset of features using high-quality geometry. In particular, a user may specifically select which ascending/descending manifolds are reconstructed with improved accuracy, focusing computational effort where it matters for subsequent analysis. This approach computes Morse-Smale complexes for larger data than previously feasible with significant speedups. We demonstrate and validate our approach using several examples from a variety of different scientific domains, and evaluate the performance of our method.



A Task-Based Abstraction Layer for User Productivity and Performance Portability in Post-Moore’s Era Supercomputing
S. Petruzza, A. Gyulassy, V. Pascucci,, P. T. Bremer. In 3RD INTERNATIONAL WORKSHOP ON POST-MOORE’S ERA SUPERCOMPUTING (PMES), 2018.

The proliferation of heterogeneous computing architectures in current and future supercomputing systems dramatically increases the complexity of software development and exacerbates the divergence of software stacks. Currently, task-based runtimes attempt to alleviate these impediments, however their effective use requires expertise and deep integration that does not facilitate reuse and portability. We propose to introduce a task-based abstraction layer that separates the definition of the algorithm from the runtime-specific implementation, while maintaining performance portability.



A Task-Based Abstraction Layer for User Productivity and Performance Portability in Post-Moore’s Era Supercomputing
S. Petruzza, A. Gyulassy, V. Pascucci,, P. T. Bremer. In 3RD INTERNATIONAL WORKSHOP ON POST-MOORE’S ERA SUPERCOMPUTING (PMES), 2018.

The proliferation of heterogeneous computing architectures in current and future supercomputing systems dramatically increases the complexity of software development and exacerbates the divergence of software stacks. Currently, task-based runtimes attempt to alleviate these impediments, however their effective use requires expertise and deep integration that does not facilitate reuse and portability. We propose to introduce a task-based abstraction layer that separates the definition of the algorithm from the runtime-specific implementation, while maintaining performance portability.



Performance Optimization Strategies for WRF Physics Schemes Used in Weather Modeling
T.A.J, Ouermi, R. M. Kirby,, M. Berzins. In International Journal of Networking and Computing, Vol. 8, No. 2, IJNC , pp. 301--327. 2018.
DOI: 10.15803/ijnc.8.2_301

Performance optimization in the petascale era and beyond in the exascale era has and will require modifications of legacy codes to take advantage of new architectures with large core counts and SIMD units. The Numerical Weather Prediction (NWP) physics codes considered here are optimized using thread-local structures of arrays (SOA). High-level and low-level optimization strategies are applied to the WRF Single-Moment 6-Class Microphysics Scheme (WSM6) and Global Forecast System (GFS) physics codes used in the NEPTUNE forecast code. By building on previous work optimizing WSM6 on the Intel Knights Landing (KNL), it is shown how to further optimize WMS6 and GFS physics, and GFS radiation on Intel KNL, Haswell, and potentially on future micro-architectures with many cores and SIMD vector units. The optimization techniques used herein employ thread-local structures of arrays (SOA), an OpenMP directive, OMP SIMD, and minor code transformations to enable better utilization of SIMD units, increase parallelism, improve locality, and reduce memory traffic. The optimized versions of WSM6, GFS physics, GFS radiation run 70, 27, and 23 faster (respectively) on KNL and 26, 18 and 30 faster (respectively) on Haswell than their respective original serial versions. Although this work targets WRF physics schemes, the findings are transferable to other performance optimization contexts and provide insight into the optimization of codes with complex physical models for present and near-future architectures with many core and vector units.



Automatic Halo Management for the Uintah GPU-Heterogeneous Asynchronous Many-Task Runtime
B. Peterson, A. Humphrey, D. Sunderland, J. Sutherland, T. Saad, H. Dasari, M. Berzins. In International Journal of Parallel Programming, Dec, 2018.
ISSN: 1573-7640
DOI: 10.1007/s10766-018-0619-1

The Uintah computational framework is used for the parallel solution of partial differential equations on adaptive mesh refinement grids using modern supercomputers. Uintah is structured with an application layer and a separate runtime system. Uintah is based on a distributed directed acyclic graph (DAG) of computational tasks, with a task scheduler that efficiently schedules and executes these tasks on both CPU cores and on-node accelerators. The runtime system identifies task dependencies, creates a task graph prior to the execution of these tasks, automatically generates MPI message tags, and automatically performs halo transfers for simulation variables. Automating halo transfers in a heterogeneous environment poses significant challenges when tasks compute within a few milliseconds, as runtime overhead affects wall time execution, or when simulation variables require large halos spanning most or all of the computational domain, as task dependencies become expensive to process. These challenges are magnified at production scale when application developers require each compute node perform thousands of different halo transfers among thousands simulation variables. The principal contribution of this work is to (1) identify and address inefficiencies that arise when mapping tasks onto the GPU in the presence of automated halo transfers, (2) implement new schemes to reduce runtime system overhead, (3) minimize application developer involvement with the runtime, and (4) show overhead reduction results from these improvements.



Coupling the Uintah Framework and the VisIt Toolkit for Parallel In Situ Data Analysis and Visualization and Computational Steering
A. Sanderson, A. Humphrey, J. Schmidt, R. Sisneros. In High Performance Computing, June, 2018.

Data analysis and visualization are an essential part of the scientific discovery process. As HPC simulations have grown, I/O has become a bottleneck, which has required scientists to turn to in situ tools for simulation data exploration. Incorporating additional data, such as runtime performance data, into the analysis or I/O phases of a workflow is routinely avoided for fear of excaberting performance issues. The paper presents how the Uintah Framework, a suite of HPC libraries and applications for simulating complex chemical and physical reactions, was coupled with VisIt, an interactive analysis and visualization toolkit, to allow scientists to perform parallel in situ visualization of simulation and runtime performance data. An additional benefit of the coupling made it possible to create a "simulation dashboard" that allowed for in situ computational steering and visual debugging.



Demonstrating GPU Code Portability and Scalability for Radiative Heat Transfer Computations
B. Peterson, A. Humphrey, J. Holmen T. Harman, M. Berzins, D. Sunderland, H.C. Edwards. In Journal of Computational Science, Elsevier BV, June, 2018.
ISSN: 1877-7503
DOI: 10.1016/j.jocs.2018.06.005

High performance computing frameworks utilizing CPUs, Nvidia GPUs, and/or Intel Xeon Phis necessitate portable and scalable solutions for application developers. Nvidia GPUs in particular present numerous portability challenges with a different programming model, additional memory hierarchies, and partitioned execution units among streaming multiprocessors. This work presents modifications to the Uintah asynchronous many-task runtime and the Kokkos portability library to enable one single codebase for complex multiphysics applications to run across different architectures. Scalability and performance results are shown on multiple architectures for a globally coupled radiation heat transfer simulation, ranging from a single node to 16384 Titan compute nodes.



Numerical integration in multiple dimensions with designed quadrature
V. Keshavarzzadeh, R.M. Kirby, A. Narayan. In CoRR, 2018.

We present a systematic computational framework for generating positive quadrature rules in multiple dimensions on general geometries. A direct moment-matching formulation that enforces exact integration on polynomial subspaces yields nonlinear conditions and geometric constraints on nodes and weights. We use penalty methods to address the geometric constraints, and subsequently solve a quadratic minimization problem via the Gauss-Newton method. Our analysis provides guidance on requisite sizes of quadrature rules for a given polynomial subspace, and furnishes useful user-end stability bounds on error in the quadrature rule in the case when the polynomial moment conditions are violated by a small amount due to, e.g., finite precision limitations or stagnation of the optimization procedure. We present several numerical examples investigating optimal low-degree quadrature rules, Lebesgue constants, and 100-dimensional quadrature. Our capstone examples compare our quadrature approach to popular alternatives, such as sparse grids and quasi-Monte Carlo methods, for problems in linear elasticity and topology optimization.