Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

Visualization

Visualization, sometimes referred to as visual data analysis, uses the graphical representation of data as a means of gaining understanding and insight into the data. Visualization research at SCI has focused on applications spanning computational fluid dynamics, medical imaging and analysis, biomedical data analysis, healthcare data analysis, weather data analysis, poetry, network and graph analysis, financial data analysis, etc.

Research involves novel algorithm and technique development to building tools and systems that assist in the comprehension of massive amounts of (scientific) data. We also research the process of creating successful visualizations.

We strongly believe in the role of interactivity in visual data analysis. Therefore, much of our research is concerned with creating visualizations that are intuitive to interact with and also render at interactive rates.

Visualization at SCI includes the academic subfields of Scientific Visualization, Information Visualization and Visual Analytics.


chuck

Charles Hansen

Volume Rendering
Ray Tracing
Graphics
pascucci

Valerio Pascucci

Topological Methods
Data Streaming
Big Data
chris

Chris Johnson

Scalar, Vector, and
Tensor Field Visualization,
Uncertainty Visualization
mike

Mike Kirby

Uncertainty Visualization
ross

Ross Whitaker

Topological Methods
Uncertainty Visualization
alex lex

Alex Lex

Information Visualization
bei

Bei Wang

Information Visualization
Scientific Visualization
Topological Data Analysis

Centers and Labs:


Funded Research Projects:


Publications in Visualization:


Revisiting Abnormalities in Brain Network Architecture Underlying Autism Using Topology-Inspired Statistical Inference,
S. Palande, V. Jose, B. Zielinski, J. Anderson, P.T. Fletcher, B. Wang. In Connectomics in NeuroImaging, Springer International Publishing, pp. 98--107. 2017.
DOI: 10.1007/978-3-319-67159-8_12

A large body of evidence relates autism with abnormal structural and functional brain connectivity. Structural covariance MRI (scMRI) is a technique that maps brain regions with covarying gray matter density across subjects. It provides a way to probe the anatomical structures underlying intrinsic connectivity networks (ICNs) through the analysis of the gray matter signal covariance. In this paper, we apply topological data analysis in conjunction with scMRI to explore network-specific differences in the gray matter structure in subjects with autism versus age-, gender- and IQ-matched controls. Specifically, we investigate topological differences in gray matter structures captured by structural covariance networks (SCNs) derived from three ICNs strongly implicated in autism, namely, the salience network (SN), the default mode network (DMN) and the executive control network (ECN). By combining topological data analysis with statistical inference, our results provide evidence of statistically significant network-specific structural abnormalities in autism, from SCNs derived from SN and ECN. These differences in brain architecture are consistent with direct structural analysis using scMRI (Zielinski et al. 2012).



Worksheets for Guiding Novices through the Visualization Design Process
S. McKenna, A. Lex, M. Meyer. In CoRR, 2017.

For visualization pedagogy, an important but challenging notion to teach is design, from making to evaluating visualization encodings, user interactions, or data visualization systems. In our previous work, we introduced the design activity framework to codify the high-level activities of the visualization design process. This framework has helped structure experts' design processes to create visualization systems, but the framework's four activities lack a breakdown into steps with a concrete example to help novices utilizing this framework in their own real-world design process. To provide students with such concrete guidelines, we created worksheets for each design activity: understand, ideate, make, and deploy. Each worksheet presents a high-level summary of the activity with actionable, guided steps for a novice designer to follow. We validated the use of this framework and the worksheets in a graduate-level visualization course taught at our university. For this evaluation, we surveyed the class and conducted 13 student interviews to garner qualitative, open-ended feedback and suggestions on the worksheets. We conclude this work with a discussion and highlight various areas for future work on improving visualization design pedagogy.



Exploration of Heterogeneous Data Using Robust Similarity
M. Mirzargar, R.T. Whitaker, R.M. Kirby. In CoRR, 2017.

Heterogeneous data pose serious challenges to data analysis tasks, including exploration and visualization. Current techniques often utilize dimensionality reductions, aggregation, or conversion to numerical values to analyze heterogeneous data. However, the effectiveness of such techniques to find subtle structures such as the presence of multiple modes or detection of outliers is hindered by the challenge to find the proper subspaces or prior knowledge to reveal the structures. In this paper, we propose a generic similarity-based exploration technique that is applicable to a wide variety of datatypes and their combinations, including heterogeneous ensembles. The proposed concept of similarity has a close connection to statistical analysis and can be deployed for summarization, revealing fine structures such as the presence of multiple modes, and detection of anomalies or outliers. We then propose a visual encoding framework that enables the exploration of a heterogeneous dataset in different levels of detail and provides insightful information about both global and local structures. We demonstrate the utility of the proposed technique using various real datasets, including ensemble data.



Visualizing Sensor Network Coverage with Location Uncertainty
T. Sodergren, J. Hair, J.M. Phillips, B. Wang. In CoRR, Vol. abs/1710.06925, 2017.

We present an interactive visualization system for exploring the coverage in sensor networks with uncertain sensor locations. We consider a simple case of uncertainty where the location of each sensor is confined to a discrete number of points sampled uniformly at random from a region with a fixed radius. Employing techniques from topological data analysis, we model and visualize network coverage by quantifying the uncertainty defined on its simplicial complex representations. We demonstrate the capabilities and effectiveness of our tool via the exploration of randomly distributed sensor networks.



Visualization in Meteorology---A Survey of Techniques and Tools for Data Analysis Tasks
M. Rautenhaus, M. Böttinger, S. Siemen, R. Hoffman, R.M. Kirby, M. Mirzargar, N. Rober, R. Westermann. In IEEE Transactions on Visualization and Computer Graphics, IEEE, pp. 1--1. 2017.
DOI: 10.1109/tvcg.2017.2779501

This article surveys the history and current state of the art of visualization in meteorology, focusing on visualization techniques and tools used for meteorological data analysis. We examine characteristics of meteorological data and analysis tasks, describe the development of computer graphics methods for visualization in meteorology from the 1960s to today, and visit the state of the art of visualization techniques and tools in operational weather forecasting and atmospheric research. We approach the topic from both the visualization and the meteorological side, showing visualization techniques commonly used in meteorological practice, and surveying recent studies in visualization research aimed at meteorological applications. Our overview covers visualization techniques from the fields of display design, 3D visualization, flow dynamics, feature-based visualization, comparative visualization and data fusion, uncertainty and ensemble visualization, interactive visual analysis, efficient rendering, and scalability and reproducibility. We discuss demands and challenges for visualization research targeting meteorological data analysis, highlighting aspects in demonstration of benefit, interactive visual analysis, seamless visualization, ensemble visualization, 3D visualization, and technical issues.



Taggle: Scalable Visualization of Tabular Data through Aggregation
K. Furmanova, S. Gratzl, H. Stitz, T. Zichner, M. Jaresova, M. Ennemoser, A. Lex, M. Streit. In CoRR, 2017.

Visualization of tabular data---for both presentation and exploration purposes---is a well-researched area. Although effective visual presentations of complex tables are supported by various plotting libraries, creating such tables is a tedious process and requires scripting skills. In contrast, interactive table visualizations that are designed for exploration purposes either operate at the level of individual rows, where large parts of the table are accessible only via scrolling, or provide a high-level overview that often lacks context-preserving drill-down capabilities. In this work we present Taggle, a novel visualization technique for exploring and presenting large and complex tables that are composed of individual columns of categorical or numerical data and homogeneous matrices. The key contribution of Taggle is the hierarchical aggregation of data subsets, for which the user can also choose suitable visual representations.The aggregation strategy is complemented by the ability to sort hierarchically such that groups of items can be flexibly defined by combining categorical stratifications and by rich data selection and filtering capabilities. We demonstrate the usefulness of Taggle for interactive analysis and presentation of complex genomics data for the purpose of drug discovery.



Reducing network congestion and synchronization overhead during aggregation of hierarchical data,
S. Kumar, D. Hoang, S. Petruzza, J. Edwards, V. Pascucci. In 2017 IEEE 24th International Conference on High Performance Computing (HiPC), IEEE, Dec, 2017.
DOI: 10.1109/hipc.2017.00034

Hierarchical data representations have been shown to be effective tools for coping with large-scale scientific data. Writing hierarchical data on supercomputers, however, is challenging as it often involves all-to-one communication during aggregation of low-resolution data which tends to span the entire network domain, resulting in several bottlenecks. We introduce the concept of indexing templates, which succinctly describe data organization and can be used to alter movement of data in beneficial ways. We present two techniques, domain partitioning and localized aggregation, that leverage indexing templates to alleviate congestion and synchronization overheads during data aggregation. We report experimental results that show significant I/O speedup using our proposed schemes on two of today's fastest supercomputers, Mira and Shaheen II, using the Uintah and S3D simulation frameworks.



Vietoris-Rips and Cech Complexes of Metric Gluings
M. Adamaszek, H. Adams, E. Gasparovic, M. Gommel, E. Purvine, R. Sazdanovic, B. Wang, Y. Wang, L. Ziegelmeier. In CoRR, 2017.

We study Vietoris-Rips and Cech complexes of metric wedge sums and metric gluings. We show that the Vietoris-Rips (resp. Cech) complex of a wedge sum, equipped with a natural metric, is homotopy equivalent to the wedge sum of the Vietoris-Rips (resp. Cech) complexes. We also provide generalizations for certain metric gluings, i.e. when two metric spaces are glued together along a common isometric subset. As our main example, we deduce the homotopy type of the Vietoris-Rips complex of two metric graphs glued together along a sufficiently short path. As a result, we can describe the persistent homology, in all homological dimensions, of the Vietoris-Rips complexes of a wide class of metric graphs.



Sheaf-Theoretic Stratification Learning
A. Brown, B. Wang. In CoRR, 2017.

In this paper, we investigate a sheaf-theoretic interpretation of stratification learning. Motivated by the work of Alexandroff (1937) and McCord (1978), we aim to redirect efforts in the computational topology of triangulated compact polyhedra to the much more computable realm of sheaves on partially ordered sets. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (2012), and the cohomology stratification algorithm given in Nanda (2017). We envision that our sheaf-theoretic algorithm could give rise to a larger class of stratification beyond homology-based stratification. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms.



Interactive Visual Exploration And Refinement Of Cluster Assignments
M. Kern, A. Lex, N. Gehlenborg, C. R. Johnson. In BMC Bioinformatics, Cold Spring Harbor Laboratory, April, 2017.
DOI: 10.1101/123844

Background:
With ever-increasing amounts of data produced in biology research, scientists are in need of efficient data analysis methods. Cluster analysis, combined with visualization of the results, is one such method that can be used to make sense of large data volumes. At the same time, cluster analysis is known to be imperfect and depends on the choice of algorithms, parameters, and distance measures. Most clustering algorithms don't properly account for ambiguity in the source data, as records are often assigned to discrete clusters, even if an assignment is unclear. While there are metrics and visualization techniques that allow analysts to compare clusterings or to judge cluster quality, there is no comprehensive method that allows analysts to evaluate, compare, and refine cluster assignments based on the source data, derived scores, and contextual data.

Results:
In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments, allows comparisons of clustering results and enables analysts to manually curate and refine cluster assignments. Our methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering algorithms. Furthermore, we enable analysts to explore clustering results in context of other data, for example, to observe whether a clustering of genomic data results in a meaningful differentiation in phenotypes.

Conclusions:
Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype analysis tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and produce improved clusterings that better differentiate genotypes and phenotypes.



Massively Parallel Simulations of Spread of Infectious Diseases over Realistic Social Networks
A. Bhatele, J. Yeom, N. Jain, C. J. Kuhlman, Y. Livnat, K. R. Bisset, L. V. Kale, M. V. Marathe. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), May, 2017.
DOI: 10.1109/ccgrid.2017.141

Controlling the spread of infectious diseases in large populations is an important societal challenge. Mathematically, the problem is best captured as a certain class of reaction-diffusion processes (referred to as contagion processes) over appropriate synthesized interaction networks. Agent-based models have been successfully used in the recent past to study such contagion processes. We describe EpiSimdemics, a highly scalable, parallel code written in Charm++ that uses agent-based modeling to simulate disease spreads over large, realistic, co-evolving interaction networks. We present a new parallel implementation of EpiSimdemics that achieves unprecedented strong and weak scaling on different architectures — Blue Waters, Cori and Mira. EpiSimdemics achieves five times greater speedup than the second fastest parallel code in this field. This unprecedented scaling is an important step to support the long term vision of real-time epidemic science. Finally, we demonstrate the capabilities of EpiSimdemics by simulating the spread of influenza over a realistic synthetic social contact network spanning the continental United States (∼280 million nodes and 5.8 billion social contacts).



A Virtual Reality Visualization Tool for Neuron Tracing
W. Usher, P. Klacansky, F. Federer, P. T. Bremer, A. Knoll, J. Yarch, A. Angelucci, V. Pascucci. In IEEE Transactions on Visualization and Computer Graphics, IEEE, 2017.
ISSN: 1077-2626
DOI: 10.1109/TVCG.2017.2744079

Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists.



Progressive CPU Volume Rendering with Sample Accumulation
W. Usher, J. Amstutz, C. Brownlee, A. Knoll, I. Wald . In Eurographics Symposium on Parallel Graphics and Visualization, Edited by Alexandru Telea and Janine Bennett, The Eurographics Association, 2017.
ISBN: 978-3-03868-034-5
ISSN: 1727-348X
DOI: 10.2312/pgv.20171090

We present a new method for progressive volume rendering by accumulating object-space samples over successively rendered frames. Existing methods for progressive refinement either use image space methods or average pixels over frames, which can blur features or integrate incorrectly with respect to depth. Our approach stores samples along each ray, accumulates new samples each frame into a buffer, and progressively interleaves and integrates these samples. Though this process requires additional memory, it ensures interactivity and is well suited for CPU architectures with large memory and cache. This approach also extends well to distributed rendering in cluster environments. We implement this technique in Intel's open source OSPRay CPU ray tracing framework and demonstrate that it is particularly useful for rendering volumetric data with costly sampling functions.



Pathways for Theoretical Advances in Visualization
M. Chen, G. Grinstein, C. R. Johnson, J. Kennedy, M. Tory. In IEEE Computer Graphics and Applications, IEEE, pp. 103--112. July, 2017.

More than a decade ago, Chris Johnson proposed the "Theory of Visualization" as one of the top research problems in visualization. Since then, there have been several theory-focused events, including three workshops and three panels at IEEE Visualization (VIS) Conferences. Together, these events have produced a set of convincing arguments.



FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis
Y. Wan, H. Otsuna, H. A. Holman, B. Bagley, M. Ito, A. K. Lewis, M. Colasanto, G. Kardon, K. Ito, C. Hansen. In BMC Bioinformatics, Vol. 18, No. 1, Springer Nature, May, 2017.
DOI: 10.1186/s12859-017-1694-9

Background:
Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations.

Results:
Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender.

Conclusion:
The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.



Uncertainty Footprint: Visualization of Nonuniform Behavior of Iterative Algorithms Applied to 4D Cell Tracking
Y. Wan, C. Hansen. In Computer Graphics Forum, Wiley, 2017.

Research on microscopy data from developing biological samples usually requires tracking individual cells over time. When cells are three-dimensionally and densely packed in a time-dependent scan of volumes, tracking results can become unreliable and uncertain. Not only are cell segmentation results often inaccurate to start with, but it also lacks a simple method to evaluate the tracking outcome. Previous cell tracking methods have been validated against benchmark data from real scans or artificial data, whose ground truth results are established by manual work or simulation. However, the wide variety of real-world data makes an exhaustive validation impossible. Established cell tracking tools often fail on new data, whose issues are also difficult to diagnose with only manual examinations. Therefore, data-independent tracking evaluation methods are desired for an explosion of microscopy data with increasing scale and resolution. In this paper, we propose the uncertainty footprint, an uncertainty quantification and visualization technique that examines nonuniformity at local convergence for an iterative evaluation process on a spatial domain supported by partially overlapping bases. We demonstrate that the patterns revealed by the uncertainty footprint indicate data processing quality in two algorithms from a typical cell tracking workflow – cell identification and association. A detailed analysis of the patterns further allows us to diagnose issues and design methods for improvements. A 4D cell tracking workflow equipped with the uncertainty footprint is capable of self diagnosis and correction for a higher accuracy than previous methods whose evaluation is limited by manual examinations.



Driving Interactive Graph Exploration Using 0-Dimensional Persistent Homology Features
A. Suh, M. Hajij, B. Wang, C. Scheidegger, P. Rosen. In CoRR, 2017.

Graphs are commonly used to encode relationships among entities, yet, their abstractness makes them incredibly difficult to analyze. Node-link diagrams are a popular method for drawing graphs. Classical techniques for the node-link diagrams include various layout methods that rely on derived information to position points, which often lack interactive exploration functionalities; and force-directed layouts, which ignore global structures of the graph. This paper addresses the graph drawing challenge by leveraging topological features of a graph as derived information for interactive graph drawing. We first discuss extracting topological features from a graph using persistent homology. We then introduce an interactive persistence barcodes to study the substructures of a force-directed graph layout; in particular, we add contracting and repulsing forces guided by the 0-dimensional persistent homology features. Finally, we demonstrate the utility of our approach across three datasets.



State of the Art in Transfer Functions for Direct Volume Rendering
P. Ljung, J. Krüger, E. Gröller, M. Hadwiger, C. D. Hansen,, A. Ynnerman. In Computer Graphics Forum, Vol. 35, No. 3, Wiley-Blackwell, pp. 669--691. June, 2016.
DOI: 10.1111/cgf.12934

A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and multivariate data into color and opacity to express and reveal the relevant features present in the data studied. Beyond this core functionality, TFs also serve as a tool for encoding and utilizing domain knowledge and as an expression for visual design of material appearances. TFs also enable interactive volumetric exploration of complex data. The purpose of this state-of-the-art report (STAR) is to provide an overview of research into the various aspects of TFs, which lead to interpretation of the underlying data through the use of meaningful visual representations. The STAR classifies TF research into the following aspects: dimensionality, derived attributes, aggregated attributes, rendering aspects, automation, and user interfaces. The STAR concludes with some interesting research challenges that form the basis of an agenda for the development of next generation TF tools and methodologies.



VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures
K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pugmire, J. Kress, H. Schroots, K. Ma, H. Childs, M. Larsen, C. Chen, R. Maynard, B. Geveci. In IEEE Computer Graphics and Applications, Vol. 36, No. 3, pp. 48--58. May, 2016.
ISSN: 0272-1716
DOI: 10.1109/MCG.2016.48

Traditional scientific visualization software approaches do not fare well in massively threaded environments. To address the needs of the high-performance computing community, the VTK-m framework fills the gaps in functionality by bringing together the most recent research.



Resonant Laboratory and Candela: Spreading Your Visualization Ideas to the Masses
A. Bigelow, R. Choudhury, J. Baumes. In Proceedings of Workshop on Visualization in Practice (VIP '16), Note: Best Paper Award , 2016.

Visualization practitioners are constantly developing new, innovative ways to visualize data, but much of the software that practitioners produce does not make it into production in professional systems. To solve this problem, we have developed and informally tested two open source systems. The first, Candela, is a framework and API for creating visualization components for the web that can wrap up new or existing visualizations as needed. Because Candela's API generalizes the inputs to a visualization, we have also developed a system called Resonant Laboratory that makes it possible for novice users to connect arbitrary datasets to Candela visualizations. Together, these systems enable novice users to explore and share their data with the growing library of state-of-the-art visualization techniques.